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Preface to the Second Edition 

The field of physicochemical hydrodynamics has received much increased 
attention since the first edition. This has necessitated some revisions and 
updating. In addition, comments from both students and practitioners suggested 
that a number of topics not included should be added or topics not treated in 
sufficient depth should be expanded. The material essentially follows the same 
outline as the first edition with some topics added through appended sections 
along with a new chapter on rheology and concentrated suspensions. Among the 
new topics included are hydrodynamic chromatography, chemical reactions in 
electrokinetics, and surface tension induced convection. Problems have been 
added to complement the new material. Suggestions or answers for the problems 
generally are not included, but a solutions manual is available from the 
publisher for course instructors to aid in tailoring assigned problems. 

The principles followed in the writing were the same as outlined in the 
original preface except that the field of rheology is now included. This preface is 
repeated here as given in the first edition. 

In the preparation of this volume, I once more acknowledge my gratitude 
to Mehmet Z .  Sengun and R. Edwin Hicks both of whom again provided 
invaluable comments which have been incorporated in the text. Thanks are also 
due to Howard Brenner for his discussions and comments. In so far as the book 
is based on the first edition, the acknowledgments still apply and to that extent 
are repeated here essentially unchanged. 

X i  



Preface to the First Edition 

Physicochemical hydrodynamics was first set out as a discipline by the late 
Benjamin Levich in his classic book of the same name. The subject, which deals 
with the interaction between fluid flow and physical, chemical, and biochemical 
processes, forms a well-connected body of study, albeit a highly interdisciplinary 
one. It has applications in many areas of science and technology and is a rapidly 
expanding field. The aim of this textbook is to provide an introduction to the 
subject, which I shall refer to here by its acronym PCH. 

Emphasis is on rational theory and its consequences, with the purpose of 
showing the underlying unity of PCH, in which diverse phenomena can be 
described in physically and mathematically similar ways. The magic of this unity 
is shown in the similar manner in which solutes concentrate in a flow containing 
chemically reacting surfaces, reverse osmosis membranes, and electrodialysis 
membranes or the similarity of particle motions in sedimentation, centrifuga- 
tion, ultrafiltration, and electrophoresis. Experimental results, numerical solu- 
tions, and reference to topics not covered are noted where they serve to illustrate 
a concept, result, or limitation of what has been presented. Empiricism is not 
eschewed, but only limited use is made of it and then only when it contributes to 
a better understanding of an idea or phenomenon. 

The book is an outgrowth of a graduate course that I have taught for a 
number of years at  M.I.T. under the joint sponsorship of the mechanical and 
chemical engineering departments. Like the course, the text is directed toward 
graduate students in these fields, as well as in materials science, environmental 
engineering, and biotechnology. An undergraduate course in fluid dynamics and 
a knowledge of the fundamentals of physical chemistry together with a course in 
advanced calculus provide sufficient prerequisites for most of the material 
presented. An effort has been made to include the necessary fundamentals to 
make the book self-contained. But because of my bias toward the “hydro- 
dynamic” aspect, there undoubtedly has crept in the presumption of a greater 
knowledge of this area than of the physical-chemical ones. 

The subject is a broad one, and since the aim has been to present the 
fundamentals, it has been necessary to limit the material covered by selecting 
examples that illustrate the unity of PCH and at  the same time put forward its 

xiii 



xiv Preface 

essentials. Consequently, a number of fields, including turbulence, rheology, 
natural convection, and compressible flows, have been omitted. Numerical 
methods or  formal asymptotic matching procedures are also not included. There 
is no  doubt as to the importance of high-speed computation in PCH, but, 
consistent with providing an introduction to the fundamentals, the book lets the 
student first taste the essence of PCH in the form of simple analytical solutions 
rather than be satiated on a banquet of detailed numerical results. 

Problems, which are so important a part of a student’s learning experience, 
are included at  the end of each chapter. The problems are ordered following the 
sequence in which the material is set out. Some of the problems call for 
numerical answers where it was felt it would be helpful to the student’s “feel” 
for the magnitudes involved. With minor exceptions, SI units are used through- 
out. The questions range in difficulty, with most requiring an analytic develop- 
ment, but with some asking only for a descriptive answer. All are intended to 
illustrate the ideas presented, though often the solution goes beyond the explicit 
discussion in the book, with the answer constituting a generalization or 
extension of the text material. 

Every effort has been made to acknowledge the work of others. However, 
for pedagogical reasons reference may sometimes be to a recognized text, 
review, or  general reference rather than to the original source, but the person to 
whom the work is attributed is made clear. O n  the other hand, the reader is 
sometimes referred to an early original work where it was felt the examination 
of the source itself was most illuminating. 

Ronald F. Probstein 
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Appendix A 
SI Units and Physical Constants 

SI Base Units 

Of the seven dimensionally independent base units, the candela is not used in 
the book. 

Quantity 

Mass 
Length 
Time 
Temperature 
Amount of substance 
Electric current 
Luminous intensity 

Name 

kilogram 
meter 
second 
kelvin 
mole 
ampere 
candela 

Symbol 

kg 
m 

K 
mol 
A 
cd 

S 

SI Derived Units 

Listed are some named derived units relevant to the material in the book. 

Quantity 

Force 
Pressure 
Energy 
Power 
Electric charge 
Electric potential 

difference 
Electric resistance 

Name 

newton 
pascal 
joule 
watt 
coulomb 

volt 
ohm 

Symbol Definition 

N kg m s-’ 
Pa N m - ’ = k g m - ’ s - ’  
J N m =  kgm’s-’ 
W J s -  ’ = kg mz s -  ’ 
C A s  
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364 Appendix A 

Electric conductance siemens S A V - ' = k g - l m - '  s A' 
CV-1 = k g - '  m-' 4 s A' 

- I  
Electric capacitance farad F 
Frequency hertz Hz s 

SI Prefixes 

Listed are prefixes to designate submultiples to 10- '' and multiples to 10" of a 
base unit. 

Factor Prefix 

10 - '  deci 
10YL centi 
lo- '  milli 
lo-" micro 
lo-'  nano 
10 - I L  PIC0 

Physical Constants 

Qiiantity 

Avogddro number 
Boltzmann constant 
Elementary charge 
Faraday constant 
Gas constant 
Permittivity of vacuum 
Standard acceleration 

Standard atmosphere 
Zero of Celsius scale 

of gravity 

Synz bol 

d 

m 
P 
n 
P 

C 

Symbol 

N A 

k 
e 
F 
R 
€,I 

g 
P O  

To 

Factor Prefix 

10 deca 
1 o2 hecto 
l o J  kilo 
lo6 mega 
10Y giga 
10" tera 

Value 

6.022 X 10" 
1.381 x 
1.602 X lo-' '  
9.648 x lo4 
8.3 14 
8.854 x 10--" 

9.807 
1.013 X lo5 

273.15 

Symbol 

da 
h 
k 
M 
G 
T 

SI Units 

rnol-' 
J K - I  

C 
c moIF' 
J K  ' m o l - '  
c V - '  m - '  

rn s - '  
Pa 
K 



Appendix B 
Symbols 

All standard mathematical and chemical symbols are taken to have their usual 
meaning. Both Cartesian tensor and boldface vector notation have been em- 
ployed in the book. In the following list only the boldface form is given for 
vector quantities to avoid confusion with the use of the subscripts i and j in 
Cartesian tensor notation and the use of a subscript i o r  j to denote a species. 

No attempt has been made to define every symbol and, in particular, 
symbols used only locally and that are not referred to again are generally not 
included. An abbreviated verbal definition and, where appropriate, an equation 
number o r  symbolic definition are given. Illustrative SI base or derived units are 
given for dimensional quantities. 

The  book encompasses several subjects, so in trying to use standard 
notation wherever possible, repetition of symbols becomes unavoidable. The 
most common usage has generally been adopted within the limitation of 
maintaining self-consistency and avoiding repetition where it might be con- 
fusing. 

Symbol 

a 
a 
a 

a 

a 

a 
A 

Definition 

Activity 
Amplitude of water wave 
Long semiaxis of prolate spheroid or 

short semiaxis of oblate spheroid 
Radius of cylinder, also cylindrical 

capillary, pipe, jet, particle, and 
collector 

Radius of sphere, also spherical 
particle, collector, and drop 

Radius of nose of bubble in capillary 
Area, also column cross-sectional area 

and porous medium surface area 

S I  Units 

- 
m 

m 

m 

m 
m 

mz 
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A apt ,  

b 

:: 

- 
C 

c 

4; 
c 

Ca 
n 

D 

Hamaker constant 
Parameter in stream function for 

cylinder, Eq. (8.3.24b) 
Parameter in stream function for sphere, 

Eq. (8.5.4b) 
Long semiaxis of oblate spheroid or 

short semiaxis of prolate spheroid 
Radius of spherical cell in cell model 
Biot number, Eq. (10.6.14) 
Bond number, Eq. (10.2.1) 
Molar density or  concentration 
Reduced ion concentration, Eq. (3.4.1 1) 
Wave speed 
Reduced ion concentration a t  anode 
Reduced ion concentration at  cathode 
Solute gelling concentration 
Mixing-cup concentration, Eq. (4.4.29), 

Specific heat a t  constant pressure 
Saturated solution concentration 
Solute concentration at  membrane 
Electrolyte concentration far from 

Reduced ion concentration, initial 
Solute concentration, initial, a t  

channel inlet, a t  tube axis 
Dimensionless solute concentration, 

Eq. (4.3.4) 
Dimensionless solute concentration 

defect, Eq. (4.4.17) 
Average solute concentration over tube 

cross section, Eqs. (4.6.2), (4.6.19) 
Mean molecular speed 
Average solute concentration, initial 
Solute concentration difference across 

Total equivalent concentration in 

Mass transfer coefficient, Eq. (4.5.8) 
Skin friction coefficient, Eq. (4.5.7) 
Total equivalent concentration in resin, 

Capillary number, Eq. (10.2.8) 
Diameter of sphere, also spherical 

Equivalent or hydraulic diameter, 

Diffusivity or diffusion coefficient, 

Problem 4.3 

charged surface 

membrane 

solution, Eq. (6.3.8) 

Eq. (6.3.9) 

particle, drop 

Eq. (4.7.8) 

translational, effective Eq. (3.4.15) 

*-Not SI unit. 

J 

m 
m 
- 
- 
mol in-' 

m s - '  
moI m - 3  

moI m-3 
moI m-3  

mol m - 3  

moI m ~- ' 
J kg- '  K ' 
mot m-3 
moI m - 3  

mot m-' 
moI m-3  

mot m - 3  

moI m-  
m s - '  
moI m-3 

moI m-3 

equiv m-3* 
- 

m 

m 
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Da 

e 
E 
E',, 

8 
8" 
f 

f,, 

f 
F 
F.4, 

F" 

F,, 

Fx 
F 

h 

h 

h 

Dispersion coefficient, Taylor 

Rotational diffusion coefficient 
Binary diffusion coefficient 
Brownian diffusion coefficient 

Eq. (4.6.27), Taylor-Aris Eq. (4.6.35) 

describing relative motion of two 
particles, Eq. (8.2.2) 

Damkohler number, Eqs. (4.1.17), 
(4.4.11) 

Specific internal energy 
Electric field 
Cylindrical collector efficiency, 

Spherical collector efficiency, 

Electric field, x component, parallel 

Equilibrium potential 
Standard electrode potential 
Dimensionless variable defining 

Eq. (8.3.17) 

Eq. (8.3.14) 

to direction of electrophoretic motion 

concentration in diffusion layer, 
Eq. (4.4.17) 

Eq. (5.1.3a) 

Eq. (5.l.lOb) 

Translational friction tensor, 

Mean translational friction coefficient, 

Faraday constant, N,e 
Attractive London force along particle 

Net external radial force on particle 
and collector line of centers 

driven to or from collector, 
Eq. (8.4.3) 

particle driven to or  from collector 
Net external radial hydrodynamic force on 

Force component in x direction 
Frictional force exerted by body in 

translational motion on fluid or by 
fluid on body 

Standard acceleration of gravity 
Effective gravity in wave motion, 

Gravitational acceleration 
Hindered settling factor, Eq. (5.4.17) 
Negative of pressure gradient 
Force on particle characterizing high- 

frequency molecular motions 
Gap distance along particle and 

collector line of centers 
Half-width of channel, electrodialysis 

cell, electrophoresis cell 
Local height of liquid layer driven by 

thermocapillarity 

Eq. (10.4.10) 

m2 s-l  

m s  

- 1  

2 - 1  

v m- '  
V 
V 

kg s- '  

N 

N 

N 
N 

N 
m s-' 

m s-' 
m s-' 

Pa m- '  

N 

m 

m 

m 
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h 
h 
h 

h 
h,, 

H 
H 

1 

J 

J 

k 

k 
k 
k ,  
k' 

1 
1 

1 
L 
L 
L D  

LLJ 

Meniscus height 
Sediment layer height 
Spacing between parallel flat plates, 

charged flat plates, and flat 
electrodes in electrolytic cell 

Specific enthalpy 
Gap distance along line of centers of 

Height of suspension layer 
Instantaneous height of free surface of 

liquid in capillary tube 
Equilibrium height of free surface of 

liquid in capillary tube 
Limiting current density 
Current density, Eq. (2.5.8) 
Surface current density 
Total current 
Mass flow rate of particles to cylindrical 

collector per unit length of cylinder 
Mass flow rate of particles to spherical 

collector 
Mass flux 
Molar flux 
Average solute mass flux over tube 

cross section, Eq. (4.6.25) 
Mass flux with respect to mass 

average velocity, Eq. (2.4.10) 
Molar flux with respect to molar 

average velocity, Eq. (2.4.1 1) 
Boltzmann constant, R I N ,  
Crowding factor 
Permeability of porous medium 
Rate constant, uth-order 

homogeneous reaction 
Thermal conductivity or thermal 

conduction coefficient 
Wave number, Eqs. (10.4.2b), (10.4.28) 
Wetting coefficient, Eq. (10.1.9) 
Gel permeability 
Rate constant, vth-order 

heterogeneous reaction 
Bubble lubrication film length 
Mean free path, lattice spacing, or  

Pan length 
Characteristic length 
Gel or resin packed bed column length 
Development length for concentration 

Development length for velocity profile 

Consistency index, Eq. (9.1.8) 

identical spheres 

distance between particle collisions 

profile in channel 

in channel 

m 
m 

m 
J k g - '  

m 
m 

m 

m 
A m-' 
 am-^' 
A m-'  
A 

W m-' K- '  
m 

m 2  

- 1  

- 

m3"-z  s - l  

m 

m 
m 
in 
m 

m 

m 
Pa s" 
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m 
M 
M 
M 
M a  
n 
n 

n 0  

n 

Nr; 
P 
P 
Pa 
P, 

AP 

AP 
P 
Pe 

r 

r 
R 
R 

Mass of a substance, molecule, or particle 
Molar mass 
Molecular weight 
Mean molar mass, Eq. (2.4.5) 
Marangoni number, Eq. (10.6.10) 
Number of moles of a substance 
Particle number density or concentration 
Initial number of moles of solute 
Unit normal vector 
Avogadro number 
Adhesion group for cylinder, Eq. (8.4.17) 
Adhesion group for sphere, Eq. (8.5.18) 
Pressure 
Ratio of spheroid semiaxes, a l h  
Atmospheric pressure 
Excess pressure over undisturbed value 

due to wave motion 
Pressure difference across curved 

surface due to surface tension 
Pressure difference across membrane 
Probability of displacement 
Peclet number, Eqs. (3.5.16), (3.5.17), 

(4.4.12), (4.6.8), (5.5.22), (9.2.3), 
(9.2.9), also ratio of Brownian diffusion 
time to convection time 

Diffusion Peclet number, Eq. (3.5.17) 
Thermal Peclet number, Eq. (3.5.16) 
Prandtl number, Eq. (3.5.20) 
Charge 
Surface charge density 
Heat flux 
Heat transfer coefficient 
Volume flow rate 
Volume flow rate per unit width 
Radial coordinate, plane polar, 

cylindrical or spherical polar 
Radial distance of bottom of sector-shaped 

cell from axis of rotation 
Mass rate of production of species i per 

unit volume 
Radial distance of meniscus from axis 

of rotation in sector-shaped cell 
Radial distance of shock interface 

from axis of rotation in centrifuge 
Particle displacement vector 
Gas constant 
Radius of curvature of static meniscus 

Mean translation coefficient, Eq. (5.l.lOa) 
Flory radius, Eq. (9.2.2) 
Molar rate of production of species i 

at  apparent tangency point 

per unit volume 

kg 
kgmol-I 

kg mol-' 

mol 
m 
mol 

moI-' 

- 

- 

- 3  

- 

- 

Pa 

Pa 
- 

Pa 

Pa 
Pa 
- 

- 

C 
C m - 2  
w m-2 
W m-' K -  
m3 s- l  
m2 s- '  

m 

m 

kg m - 3  s- '  

m 

m 
m 
J mol-' K- '  

m 
m 
m 

moI m-3  s- '  
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S 
S 
sc  
St 
t 
T 
7'' 
ti 

t4 r11 d x 

Translation tensor, Eq. (5.1.3a) 
Solute rejection coefficient of membrane 
Translation coefficients for translation 

of a spheroid parallel to its 
semiaxes, Eqs. (5.1.6), (5.1.7), also 
any body parallel to  its principal 
axes, Eq. (5.1.1Oa) 

Molar rate of production of species i 
per unit area of reaction surface 

Rayleigh number, Eq. (10.6.1) 
Reynolds number, Eq. (3.5.14) 
Reynolds number, U x i v  
Sedimentation coefficient, Eq. ( 5 . 5 . 2 )  
Specific entropy 
Sedimentation coefficient, infinitely 

dilute mixture 
Specific area, Eq. (4.7.11) 
Spreading coefficient, Eq. (10.1.10) 
Schmidt number, Eq. (3.5.21) 
Strouhal number, Eqs. (3.5.12), (5.5.25) 
Time 
Temperature 
Perturbation temperature 
Fluid velocity, x component, parallel to 

channel walls, pan surface o r  plate 
surface 

Speed of plane kinematic wave 
Speed of kinematic shock moving up from 

True electrophoretic velocity in 

Speed with which a point with ionic 

Electroosrnotic velocity in 

Speed of ion exchange zone front 
Liquid velocity in electrophoresis cell 
Maximum fluid velocity a t  center of 

container bottom 

electrophoresis cell 

fraction x 8  in solution moves 

electrophoresis cell 

circular or straight channel with fully 
developed velocity profile, Eq. (4.2.14) 

falling liquid film or  liquid film 
driven by thermocapillarity 

Observed particle velocity in 
electrophoresis cell 

Radial component of fluid velocity in 
spherical polar coordinates 

Speed of kinematic shock moving down 
from container top 

Polar component of fluid velocity in 
spherical polar coordinates 

Velocity at free surface of 

m 
- 

m 

moI m - z s - l  

S 

J K - '  kg-' 

S 

m - '  
N m - '  

S 

K 
K 

m s - '  
m s-l 

m s - '  

m s - '  

m s-l 

m s - '  
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- 
U 

U '  

U '  

U 

U 

U 
U 
U 

U 

U 
U 
U 

U 
U ,  

U 

U 

Average longitudinal fluid velocity in 

Longitudinal fluid velocity in channel 

Perturbation fluid velocity, 

Disturbance fluid velocity due to wave 

Fluid velocity, mass average velocity, 

Velocity of surface active material 
Molar average velocity, Eq. (2.4.7) 
Bubble interface speed 
Characteristic speed 
Electroosmotic velocity past a plane 

Electrophoretic particle speed 
Mean fluid velocity in tube 
Particle fall speed, hindered settling 

Superficial velocity in porous medium 

channel, Eq. (4.4.6a) 

with respect to moving axis x '  

x component 

motion 

Eq. (2.4.6) 

surface 

speed 

equal to uniform velocity upstream of 
medium, Eq. (4.7.7) 

Uniform free stream flow velocity 
Uniform speed of plate in Couette flow 
Uniform velocity of fluid a t  channel 

inlet, equal to average longitudinal 
velocity in channel with no fluid 
removal or addition 

Withdrawal speed of plate in dip coating 
Mean interstitial or effective pore 

velocity in porous medium, 
Eqs. (4.7.6), (4.7.13), (6.3.13) 

Cross-sectional average particle velocity 
Radial drift velocity of particles in 

Particle fall speed in infinitely dilute 

Translational velocity of body or 

Fluid velocity, y component, normal to 

Mobility of particle in solution 
Specific volume 
Mobility tensor, Eq. (5.1.3b) 
Permeation velocity of solution 

Mean mobility, Eq. (5.1.10~) 
Solute particle partial specific volume 
Perturbation fluid velocity, y component 
Average speed of liquid ahead of bubble 

centrifugation 

suspension 

particle 

channel walls or plate surface 

through membrane 
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V 

"* 

V R  
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W 

W '  

X 

X 

X 

X 

X 

Applied voltage 
Volume of solution or mixture, also 

London attractive energy between two 

Coarse particle volume 
Fine particle volume 
Carrier liquid volume 
London attractive energy per unit area 

London attractive energy between two 

Elution volume, Eq. (4.7.3) 
Internal volume of gel pores accessible 

Repulsive potential energy between two 

Repulsive potential energy per unit 

particles, column, and porous medium 

molecules or particles 

between two infinite flat plates 

identical spheres 

to solvent 

charged particles 

area between two infinite flat plates 
of same charge 

Repulsive potential energy between two 
identical spheres of same charge 

Volume of voids in porous medium 
Dimensionless applied voltage, 

Fluid velocity, z component 
Perturbation fluid velocity, z component 
Boundary layer coordinate along surface 

in streamwise direction 
Cartesian coordinate in direction of 

wave motion on free surface 
Cartesian coordinate parallel to 

direction of motion of spherical 
particle and translating with it 

Cartesian or cylindrical coordinate in 
direction of flow or direction of 
motion 

Interface coordinate in direction of 
motion of plane kinematic wave 

Equivalent ionic fraction of A in 
solution, Eq. (6.3.4) 

Equivalent ionic fraction of B in 
solution, 1 - x,, 

Mole fraction of species i in solution, 
Eq. (2.4.4) 

Equivalent ionic fraction of A in 
ion exchange resin, Eq. ( 6 . 3 . 5 )  

Equivalent ionic fraction of B in 
ion exchange resin, 1 - X A  

Cylindrical coordinate in direction 
ol flow and translating with mean flow 
speed, Eq. (4.6.15) 

Eq. (6.2.11) 
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X 

Y 
Y 

Y 

z 

Z 

z 

a 

a 

P 
P 

P 
P,, 

Y 

Y 
r 
r 
6 

Spatial coordinate vector, rectangular 
Cartesian coordinate system x ,  y, z 

Boundary layer coordinate normal to surface 
Cartesian coordinate normal to direction 

of motion of spherical particle and 
translating with it 

Cartesian coordinate normal to surface 
or  direction of flow 

Cartesian coordinate normal to direction 
of wave motion on free surface or 
thermocapillary motion in pan 

Cartesian coordinate transverse to 
direction of motion of spherical 
particle and translating with it 

Charge number 
Concentration boundary layer transformed 

5 coordinate, Eq. (4.5.23) 
Cylindrical coordinate along symmetry axis 

in stability analysis of liquid jet 
Fraction of column cross-sectional 

area available to solute 
Thermal diffusivity 
Amplification factor in jet instability 
Particle diameter to minimum separation 

Temperature gradient 
Collision frequency per unit volume of 

monodisperse particles 
Collision frequency per unit volume of 

a, particles with all a, test particles 
Dimensionless function of wall 

potential, Eq. (8.1.12b) 
Shear rate 
Polarization parameter, Eq. (4.4.30) 
Surface excess concentration 
Local film thickness formed in dip 

coating and by bubble in capillary 
Diffusion or  concentration boundary 

layer thickness 
Constant limiting film thickness formed in 

dip coating and by bubble in capillary 
Gel layer thickness 
Viscous or velocity boundary layer thickness 
Initial width of solute slug 
Capillary length, Eq. (10.2.2) 
Permittivity 
Void fraction or  porosity of porous 

medium, Eq. (4.7.9) 
Rate-of-strain tensor, Eq. (2.2.15) 
Dilatation, Eq. (2.2.17) 
Concentration boundary layer transformed 

between particles, Eq. (9.3.9) 

y coordinate, Eq. (4.5.14) 
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7) 

8 

8 

5 

5 

Radial displacement of disturbed jet 

Vertical displacement of disturbed free 

Zeta potential 
Apparent or effective viscosity of suspension 
Concentration or viscous boundary layer 

transformed y coordinate, Eqs. (4.3.5), 
(4.4.18), (4.5.11), (6.2.9), (8.3.7) 

Eq. (10.3.8) 

surface, Eq. (10.4.25) 

surface, Eq. (10.4.1) 

Dimensionless local film thickness, 

Relative viscosity, v / ~  
Coarse relative viscosity, Eq. (9.4.4) 
Fine relative viscosity, Eq. (9.4.4) 
Net relative viscosity, bimodal 

suspensions, Eq. (9.4.4) 
Zero-shear-rate viscosity 
Infinite-shear-rate viscosity 
High shear relative viscosity 
Intrinsic viscosity, polymer rheology, 

Eq. (9.2.4) 
Intrinsic viscosity, suspension rheology, 

Eq. (9.3.la) 
Intrinsic viscosity scaled to 

zero-shear-rate viscosity 
Fraction of surface adsorption sites 

occupied 
Polar angle or in cylindrical coordinates 

azimuthal angle about symmetry axis 
Static contact angle 
Filter coefficient, Eq. (8.5.13) 
Particle-to-tube radius 
Wavelength, Eq. (10.4.2~)  
Debye length, Eq. (6.4.5) 
Debye length ratio, A,la 
Molar conductivity, Eq. (2.5.1 1 )  
Chemical potential 
Viscosity or  viscosity coefficient 
Internal viscosity of fluid drop 
Bingham plastic viscosity 
Kinematic viscosity 
Number of ions formed if solute dissociates 
Overall order of reaction 
Order of reaction with respect to species 

Concentration boundary layer transformed 

Coordinate in flow direction in ion 

Reduced radial variable, Eq. (5.5.20b) 
Reduced x coordinate, Eq. (10.3.8) 
Osmotic pressure 

i or stoichiometric coefficient 

x coordinate, Eqs. (4.4.16), (6.2.10) 
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Reduced density variable, Eq. (5.5.20a) 
Osmotic pressure difference across membrane 
Mass density or  concentration 
Solute or suspended particle density or 

Electric charge density 
Fluid solvent density 
Solute concentration in gel 
Maximum particle concentration in 

Dilute suspension particle concentration 
Initial solute concentration 
Mean density averaged over tube 

cross section, Eq. (4.6.26) 
Mean density averaged over number of 

species 
Dimensionless particle concentration, 

Eq. (8.3.6) 
Electrical conductivity of solution, 

Eq. (2.5.10) 
Partition coefficient, Eq. (4.7.1) 
Surface tension 
Bulk electrical conductivity of fluid 
Surface electrical conductance 
Solid-gas surface tension 
Solid-liquid surface tension 
Negative of surface tension gradient 
Mean value of conductivity of double 

layer shell around spherical particle 
Reference stresses 
Characteristic time 
Flocculation time 
Reduced time variable, Eq. (5.5.20b) 
Shear stress 
Time to reach equilibrium 
Wave period, Eq. (10.4.2a) 
Stress tensor 
Yield stress 
Stress dyadic or  tensor 
Disturbance velocity potential 
Electrostatic or electric potential 
Volume fraction, particles in 

suspension, polymer in fluid, 
grains in porous medium 

Coarse particle volume fraction, 
Eq. (9.4.3) 

Electric potential in bulk fluid 
Fine filler volume fraction, Eq. (9.4.2) 
Maximum packing fraction, fluidity limit 
Total solids volume fraction, Eq. (9.4.1) 
Wall potential 
Potential drop in fluid 
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sedimented layer 
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Axial component of electric potential in 

Radial component of disturbance velocity 

Viscous dissipation function, Eq. (3.2.6) 
Electric potential in double layer, 

Eq. (7.2.8) 
Radial component of electric potential 

in circular capillary, Eq. (6.5.9) 
Stream function for flow past cylinder 
Dimensionless radial component of 

circular capillary, Eq. (6.5.9) 

potential, Eq. (10.4.28) 

electric potential in circular 
capillary, zFJIIRT 

Stream function for flow past sphere 
Stream function for limiting particle 

Angular speed of rotation or 

Radian frequency of wave motion, 

Wave frequency, Eq. (10.4.23) 
Mass fraction of species i in solution, 

Total collision frequency of a, particles 

Angular velocity 
Rotation tensor, Eq. (5.1.16) 

trajectory in flow past sphere 

of centrifuge 

Eq. (10.4.2a) 

Eq. (2.4.3) 

with a ,  test particle 

V 

m2 s - '  
W m-3 

V 

V 
m' s-l 

m3 s-l 

- 1  
S 

- 1  

- 1  
S 
S 

- 1  

- 1  
S 

S 

m3 

Parallel to u axis of prolate spheroid 
With reference to exchangeable ion A 
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With reference to ith species 
With reference to jth species 
Limiting value, current density, flux, flow velocity 
Conditions at  midplane between charged plates 
Corresponding to maximum amplification factor 
Corresponding to minimum wave speed 
Particle 
Surface layer 
Stationary level in electrophoresis cell 
Value at  wall or surface 
Charge neutral condition far from charged surface 
Infinitely dilute suspension 
Particle-free value in Couette flow 
Reference or  unperturbed state, standard conditions, free stream value, far 

Conditions above and below downward-moving kinematic discontinuity, 
from surface, value at  entrance to channel 

respectively 
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132 
192 

+ 
- 

Conditions at  hot side wall temperature T ,  and cold side wall temperature 

Conditions ahead of and behind bubble in capillary, respectively 
With reference to spherical particles of radius a, and uz, respectively, in 
mixture of both particles 
With reference to positively charged ion 
With reference to negatively charged ion 

T,, respectively 

Superscripts 
- 

With reference to ions or ionic concentrations in ion exchange resin phase 
Perturbation component 

* Reduced dimensionless variable 

Mathematical 

D / D t  Material derivative, Eq. (2.2.3) 
vs Surface gradient 
0 Time average value 
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1 Introduction 

1.1 Physicochemical Hydrodynamics 

Physicochemical hydrodynamics may be broadly defined as dealing with fluid 
flow effects on physical, chemical, and biochemical processes and with the 
converse effects of physical, chemical, and biochemical forces on fluid flows. 
The interplay between the hydrodynamics and physics or chemistry, including 
biochemistry, may be local or global. When it is local, the principal features of 
the flow may be obtained without a knowledge of the physical or chemical 
phenomena, and the state of the flow fixes the physical and chemical behavior. 
When it is global, the physicochemical phenomena control the nature of the 
entire flow. So far as the fluid mechanics is concerned, the local effects may be 
considered a class of weak interactions, and the global ones a class of strong 
interactions. An explosion is a strong interaction since the energy release 
associated with the chemical reaction defines the flow. The electroosmotic flow 
through fine charged capillaries, such as in porous soils, is a strong interaction 
since the electric field defines the flow. On the other hand, the interaction of a 
fluid flow with a corrosion reaction at  a pipe surface is a weak one since the 
corrosion will not affect the bulk flow. Similarly, the exothermic chemical 
reaction in a flow where the reacting components are dilute would only result in 
a small energy release and would not generally affect the bulk flow. 

A distinctive characteristic of physicochemical hydrodynamics is the com- 
monality of behaviors underlying many seemingly diverse phenomena. The 
commonality is brought about by two factors: (1) the similar character of the 
continuum, linear constitutive transport relations for mass, heat, and charge; (2) 
the similarity or, frequently, the identity of boundary conditions for chemical, 
electrochemical, and biochemical reactions; mass, charge, and heat transfer; and 
phase change. Throughout the book we shall attempt to exploit the behavioral 
similarities of these different physical and chemical phenomena. 
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2 Introduction 

1.2 Fluid and Flow Approximations 

In our treatment of single-component or multicomponent flows of fixed compo- 
sition, as well as multicomponent flows of species that are reacting, we regard 
the fluid as a single continuum phase that is continuously and indefinitely 
divisible. This ensures that all macroscopic physical, chemical, and thermo- 
dynamic quantities, such as momentum, energy, density, and temperature, are 
finite and uniformly distributed over any infinitesimally small volume, and 
enables a meaning to be attached to the value of the quantity “at  a point.” The 
basis of this continuum approximation lies in the assumption that the charac- 
teristic macroscopic flow scale is large compared with the molecular length scale 
characterizing the structure of the fluid. 

The subject matter will frequently be concerned with situations where the 
fluid contains a dispersed phase that cannot be considered a component-for 
example, macromolecules, rigid particles, or droplets. In these cases the con- 
tinuum approximation is assumed to hold within the suspending fluid and the 
dispersed phase. The concentration of the rigid or fluid dispersed phase will 
encompass both dilute and concentrated suspensions. 

Although the continuum approximation disregards the molecular nature of 
the fluid, we shall have recourse to this structure when considering the origin of 
nonequilibriuni, viscous, diffusive, and interfacial effects. 

The word hydrodynamics is used in the title of this book rather than the 
more general term fluid mechanics, partly because of convention but also to 
indicate that the fluids we deal with are generally held to be “incompressible” 
liquids rather than gases. Insofar as the fluids are regarded as continuous, the 
distinction between liquids and gases is not fundamental with respect to the 
dynamics, provided compressibility may be neglected. A gas is much less dense 
and much more compressible than a liquid so long as it is not too close to or 
above the critical temperature a t  which it can be liquefied. As a consequence, 
pressure variations in a gas flow are associated with much larger density changes 
than in the flow of a liquid. However, the density in a flowing compressible gas 
can be regarded as essentially constant if  the changes in pressure are small. The 
bchavior of a gas flow with small pressure changes is essentially the same as that 
of an “incompressible” liquid flow. For a single-phase fluid in the absence of 
temperature gradients, the criterion for constant-density flow translates into the 
Mach number, equal to the ratio of the characteristic flow speed to the speed of 
sound in the fluid, and being small compared to unity. 

A word of caution is necessary since the characterization “incompressible” 
is conventionally interpreted as synonomous with “constant density.” However, 
from our remarks a low-speed flow of, say, air may be regarded a constant- 
density flow despite the fact that air is a highly compressible fluid. O n  the other 
hand, a solution of saltwater subjected to a centrifugal force field in an 
ultracentrifuge develops a strong density gradient, and the solution, though 
incompressible, can hardly be considered of constant density. 

The fluids we will examine are real fluids in that they are characterized by 
their ability to support shear stresses; as such they are viscous. More generally, 
rcal fluids support viscous effects, usually termed transport effects in the 
physicocheniical literature. These include diffusion of mass, heat, and charge. 
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Transport effects together with nonequilibrium effects, such as finite-rate chemi- 
cal reactions and phase changes, have their roots in the molecular behavior of 
the fluid and are dissipative. Dissipative phenomena are associated with thermo- 
dynamic irreversibility and an increase in global entropy. 

Viscous flows may be classified into the limiting regimes of laminar and 
turbulent flows. In laminar flow the motion is regular and the fluid moves as if it 
were layered, with each layer having a different velocity. On the other hand, 
turbulent flow exhibits an irregular and chaotic behavior, though there may be 
some persistence of order present. In forced convection, the motion is laminar or 
turbulent, depending on whether the Reynolds number is respectively small or 
large compared with a critical value (the Reynolds number is defined as the 
characteristic flow speed multiplied by the characteristic flow length divided by 
the fluid kinematic viscosity). The numerator in the dimensionless ratio charac- 
terizes the flow and measures momentum transport by convection, whereas the 
denominator characterizes the fluid and measures momentum transport by 
diffusion. 

The important practical features of turbulence are the sharply increased 
rates of transfer and mixing compared with molecular diffusion. Although a 
fundamental understanding of turbulence remains elusive, there are nevertheless 
many technical and engineering problems that can be handled by empirical and 
phenomenological modeling, examples of which include the mixing length and 
eddy diffusivity concepts. Because our aim is to display phenomena that arise 
from the interplay between physical chemistry and flow, we shall restrict our 
considerations to laminar flow, for which there is a rational and well-defined 
theory at  least for Newtonian fluids. Another reason for this choice is that many 
of the important problems in physicochemical hydrodynamics are concerned 
with flow systems of small scale, so the Reynolds numbers are low and the 
motions are laminar. Examples are fluid systems involving macromolecules and 
particles, porous media and capillaries, and significant interfacial forces. 

We shall also examine laminar flows for non-Newtonian fluids, where the 
stress is not linear in the rate of strain. Such flows, which fall under the science 
of rheology, encompass a spectrum of materials from elastic fluids at  one end to 
Newtonian fluids at the other. Included are polymeric fluids and suspensions, 
both of which play an important role in physicochemical hydrodynamics. 

In the spirit of our restriction to the laminar regime, we shall only briefly 
touch on natural convection-that is, flows produced by buoyancy forces acting 
on fluids in which there are density differences. A common example is buoyant 
motion in a gravitational field where the density difference arises from heat 
exchange. Even in weakly buoyant motions generated by small density differ- 
ences, turbulence is ubiquitous. We shall, however, consider convection induced 
by surface tension gradients. 

1.3 Particle and Pore Geometry 

Throughout the book we shall frequently deal with suspensions of small 
“particles,” including macromolecules, colloids, cells, and flocs. The geometry 
of these particles is important for defining their interactions with the fluid 
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system. Often their shapes are complex, and nonrigid particles may differ in 
configuration under static and dynamic conditions and in different environ- 
ments. Figure 1.3.1 shows some of the particles of interest and their characteris- 
tic sizes. 

We will generally consider macromolecules to represent the smallest 
dispersed phase not considered a component. A macromolecule is a large 
molecule composed of many small, simple chemical units called strz4ctural tinits. 
It may be either biological or synthetic. Biological macromolecules contain 
numerous structural units, in contrast to synthetic macromolecules. Sometimes 
all macromolecules are referred to as polymers, although a polymer may be 
distinguished as a macromolecule made up of repeating units. Polyethylene, for 
example, is a synthetic polymer built up from a single repeating unit, the 
ethylene group. I t  has a simple linear chain structure in which each structural 
unit is connected to two other structural units. 

A protein is a biological macromolecule composed of amino acid residues 
of the 20 common amino acids, joined consecutively by peptide bonds. Hemo- 
globin, the oxygen-carrying protein in red blood cells, is nearly spherical, with a 
diameter of about 5 nm (Stryer 1988). A model of the hemoglobin molecule as 
deduced by Perutz (1964) from x-ray diffraction studies is shown in Fig. 1.3.2. 
The model is built up from blocks representing the electron density patterns at  
various levels in the molecule. A larger protein, one that is fundamental to the 
blood-clotting process, is fibrinogen, a long slender molecule with a length of 
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Figure 1.3.2 Model of hemoglobin deduced from x-ray diffraction studies. [After 
Perutz, M.F. 1964. The hemoglobin molecule. Sci. Ameu. 211(5), 64-76. Copyright 0 
1964 by Scientific American, Inc. All rights reserved. With permission.] 

about 50 nm (Stryer 1988). O n  a scale often an order of magnitude larger are 
viruses, which are very symmetric rigid macromolecules consisting of infectious 
nucleic acids surrounded by coats made up of protein subunits. Figure 1.3.3 is 
an electron micrograph of a tobacco mosaic virus of length about 300nm. 

Given the variety of particles and their diverse shapes, the question arises 
as to how they are represented or “modeled” in a rational treatment of their 
interactions in fluid systems. In our treatments we shall consider the particles to 
be regular geometrical shapes in the Euclidean sense. Thus particles will, for 
example, be represented by spheres (the model used most often), prolate and 
oblate ellipsoids of revolution, rods, and disks. Many protein macromolecules 
can be regarded as spherical, as, for example, hemoglobin in Fig. 1.3.2. 
Synthetic polymers dispersed in suspension, like the polystyrene latex particles 
shown in the micrograph of Fig. 1.3.4, are spherical or very nearly spherical, as 
are the particles of numerous colloidal systems. Many proteins can be regarded 
as ellipsoids of revolution. Clays and many crystalline materials are platelike 
and can be modeled as thin disks, and proteins such as fibrous collagen and the 
tobacco mosaic virus of Fig. 1.3.3 can be regarded as cylindrical rods. 

Synthetic polymers and biological macromolecules are often modeled as a 
cluster of spheres or  as a string of rods and spherical beads. The rod-and-bead 
configuration may be rigid, as a dumbell, o r  flexible, where a bead connects to 
two rods as in a ball-and-socket joint or jointed chain. The protein fibrinogen 
has the character of a linear, rod-and-bead configuration with two rods and 
three beads. Most synthetic polymers and many biological macromolecules are 
flexible because of rotations about the chemical bonds. 
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Figure 1.3.3 Electron micrograph of tobacco mosaic virus particle. [Courtesy of Prof. 
Emeritus Robley C. Williams, Virus Laboratory and Dept. of Molecular Biology, Univ. of 
California, Berkeley.] 

Figure 1.3.4 Electron micrograph of shadowed 300 nm diameter polystyrene latex 
particles. [Courtesy of Olga Shaffer, Emulsion Polymers Institute, Lehigh University.] 
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The individual particles of which we have spoken seem, in many cases, 
amenable to a relatively simple geometric description. In solution, however, 
particles may floc or aggregate due to random particle-particle and particle-floc 
collisions, and generally complex shapes arise that belie the much simpler shape 
of the original particle. Figure 1.3.5 from Weitz & Oliveria (1984) shows in 
two-dimensional projection an irreversible aggregate of uniform-size, spherical 
gold particles with diameter 15 nm. 

The treelike cluster in Fig. 1.3.5 is one of a genera1 class of shapes named 
fructuls by Mandelbrot (1982). A fractal is a shape whose regularities and 
irregularities are statistical and whose statistical properties are identical at all 
scales, that is, scale-invariant under a change of length scale. From Fig. 1.3.5 it  
may be seen that associated with the cluster are open spaces with scales 
extending down from that of the cluster to that of a single particle. There is no 
characteristic length scale for the open spaces or other geometrical features 
between their extremes, indicating dilation symmetry. I f  a sphere of radius Y is 

b 
500 nm 

Figure 1.3.5 Electron micrograph of irreversible aggregate formed in suspension of 
spherical gold particles with diameter 15 nm. [Courtesy of Dr. David A. Weitz. From 
Weitz, D.A. & Oliveria, M. 1984. Fractal structures formed by kinetic aggregation of 
aqueous gold colloids. Phys. Rev. Letters 52, 1433-1436. With permission.] 
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drawn around an arbitrary point on the cluster and the number of particles N is 
counted, it is found that N ( r )  - ( Y ) ’ . ’ ~  for Y ranging from about the particle size 
to the cluster size (Weitz LYC Oliveria 1984). It is argued theoretically that the 
hydrodynamic interactions of the cluster in a low-speed, inertia free flow (low 
Reynolds number flow) are as if the cluster were a hard sphere of radius a 
spanning the cluster (Witten & Cates 1986). Such behavior provides some 
justification for the approach of representing even irregularly shaped particles by 
regular geometrical shapes. 

An additional point regarding particle suspensions is that we shall general- 
ly assume the dispersion to be monodisperse; that is, the particles are all the 
same. Most suspensions are polydisperse, with the particles characterized by a 
distribution of sizes and shapes. When we do not account for the polydispersity 
specifically, we will assume that the particular property being determined can be 
defined by an appropriate average over the particle system as, for example, 
number, mass, o r  volume average. 

Closely related to the geometrical representation of particles is the repre- 
sentation of porous media (Adler 1992). In the text we will have frequent 
occasion to be concerned with porous media, examples of which are packed 
beds of particles, soils, sedimentary rock, gels, membranes, and many biological 
systems. The characteristic sizes of the channels or interstices in such media may 
range from several molecular diameters in synthetic, reverse osmosis membranes 
to sizes characteristic of the particles making up a packed bed or a natural 
medium. Porous media are generally heterogeneous and characterized by three- 
dimensional random networks. They often exhibit a fractal nature, as in 
geophysical environments, such as sedimentary rocks, and in biological environ- 
ments, such as the lung and capillary systems. 

Consistent with our approach to particle geometry, we shall assume the 
porous media with which we deal to be homogeneous. Moreover, we will model 
the media by simple geometrical means such as bundles or assemblages of 
straight capillaries or beds of discrete geometrically defined particles, such as 
spheres or cylinders. It is generally assumed that appropriate averages can be 
defined for a real porous media that enable the simplified models to be 
representative. 
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2 Transport in Fluids 

2.1 Phenomenological Models 

The principles of conservation of momentum, energy, mass, and charge are used 
to define the state of a real-fluid system quantitatively. The conservation laws 
are applied, with the assumption that the fluid is a continuum. The conservation 
equations expressing these laws are, by themselves, insufficient to uniquely 
define the system, and statements on the material behavior are also required. 
Such statements are termed constitutive relations, examples of which are 
Newton’s law that the stress in a fluid is proportional to the rate of strain, 
Fourier’s law that the heat transfer rate is proportional to the temperature 
gradient, Fick’s law that mass transfer is proportional to the concentration 
gradient, and Ohm’s law that the current in a conducting medium is propor- 
tional to the applied electric field. 

The constitutive equations to be adopted are defined empirically, though 
the coefficients in these equations (viscosity coefficient, heat conduction coeffi- 
cient, etc.) may be determined at the molecular level. Often, however, these 
coefficients are determined empirically from the phenomena themselves, though 
the molecular picture may provide a basis for the interpretation of the data. It is 
for this reason that the description of the fluid state based on a continuum 
model and concepts is termed a phenomenological description or model. 

Sometimes when dealing with a fluid that contains a dispersed particle 
phase that cannot be considered a component, we treat the suspension fluid as a 
continuum with a constitutive relation that is modified because of the presence 
of the particles. An example to be discussed in Chapter 5 is Einstein’s modi- 
fication of the Newtonian viscosity coefficient in dilute colloidal suspensions due 
to hydrodynamic interactions from the suspended particles. As with molecular 
motions, the modified coefficient may be determined from measurements of the 
phenomenon itself by using results from analyses of the particle behavior in the 
fluid as a guide. These ideas are further expanded upon in Chapter 9 where the 
behaviors of concentrated suspensions of colloidal and non-colloidal particles 
are examined. 
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10 Transport in  Fluids 

2.2 

From physical experience we know that a flow of energy or matter can be 
set up in a conducting system whenever there is a spatial gradient of a state 
variable, for example, temperature, pressure, or voltage. All fluxes will vanish 
under conditions of spatial homogeneity where the spatial gradients of all state 
variables are zero. Irreversible thermodynamics provides a more specific state- 
ment. Recall that an intensive thermodynamic property  is independent of the 
mass or size of the system, the converse holding for an extensive property. Thus, 
the transport of fluxes (that is, the rates of flow per unit cross-sectional area of 
energy and matter in a conducting or transporting medium) are determined by 
the nature of the transporting medium and its local intensive thermodynamic 
state and by the local gradients in the natural intensive properties. 

The phenomenological or constitutive equations describe the manner in 
which the fluxes depend upon the spatial gradients of the intensive properties. In 
what follows we shall discuss the momentum flux, which is related to velocity 
gradient by fluid viscosity; heat flux, which is related to temperature gradient by 
fluid thermal conductivity; mass flux, which is related to concentration gradient 
by the fluid diffusivity; and current density, which is related to electrostatic 
potential gradient by specific conductivity. The fluxes of mass, heat, and charge 
are all vector quantities, and their transport characteristics are quite similar and 
often analogous. Momentum flux or stress, however, is a second-order tensor, 
and except when there is only a single component of stress, similarities in 
transport behavior to the other quantities are often limited. This may be 
interpreted as a consequence of the fact that the components of a vector 
transform like the coordinates themselves, whereas the components o f  a second- 
order tensor transform like the squares of the coordinates. 

Viscosity and Momentum Transport 

The real fluids we consider can support shear stresses and are viscous. We 
emphasize this again because real-fluid effects per se are identified with dissipa- 
tion. However, dissipation may arise in a fluid not only because of viscous and 
other transport effects but also because of nonequilibrium effects associated 
with finite-rate reactions. Nonequilibrium effects can be present in an inviscid 
fluid, that is, a fluid unable to support shear stresses. The distinction between 
nonequilibrium effects, on the one hand, and transport effects, on the other, is 
based on the concept of spatial homogeneity. Transport effects, like viscosity, 
are defined as dissipative effects that depend inherently upon spatial gradients. A 
nonequilibrium effect is defined as a dissipative effect that is present with spatial 
homogeneity, with the proviso that the fluid density can change with time 
(Hayes & I’robstein 1966). 

Newton’s law of viscosity states that there is a linear relation between the 
shear stresses and rates of strain. Let us first examine this law for the case of 
simple shear where there is only one strain component. For explicitness consider 
the planar Couette problem of a steady shear flow generated by the parallel 
motion of one infinite plate at  a constant speed U with respect to a second fixed 
infinite plate, the plates being separated by a small distance h with the pressure 
I ,  constant throughout the fluid (Fig. 2.2.1). The role of boundary conditions in 
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Force balance 

xdtrection 

i, 
Figure 2.2.1 Shear flow between two parallel plates. 

a viscous flow is critical, and we assume the no-slip condition-that is, the fluid 
“sticks” to both plates. A tangential force is required to maintain the motion of 
the moving plate, and this force must be in equilibrium with the frictional forces 
in the fluid. 

A force balance for the shaded fluid element in Fig. 2.2.1 gives for the net 
force acting on the element in the x direction 

2 F, = (2) A y  A x  1 (2.2.1) 

Here, T~~ is the shear stress exerted in the x direction on a fluid surface of 
constant y.  By convention, on a positive y face the shear is positive in the 
positive x direction, and on a negative y face the shear is positive in the negative 
x direction. 

From Newton’s second law 

z F x  Du 
- = P z  Vol (2.2.2) 

where p is the mass density and D I D t  is the material derivative or rate of change 
of a physical quantity following a fluid element: 

D d  d 
- + u , -  

D t  d t  d x ,  
(2.2.3) 

The notation D I D t  is used to distinguish from the usual total time derivative. 
For steady flow with the plates infinite in the x direction, d ld t  = 0 and 

d / d x  = 0. As a consequence, the velocity component parallel to the plates is 
u = M( y) while the normal component u = 0. Hence, Du/Dt  = 0, and 
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(2.2.4) 

or, throughout the fluid, 

T~~ = constant (2.2.5) 

For most fluids the shear stress is a unique function of the strain rate. The 
constitutive relation of Newton assumes the shear stress to be linear in the strain 
rate. In the Couette problem there is only the single strain-rate component 
duidy and single stress component ryx, so the Newtonian viscosity law may be 
written 

du 
T y x  = P & (2.2.6) 

The quantity p is the viscosity coefficient of a Newtonian fluid-that is, a fluid 
that follows the Newtonian viscosity law. It is an intensive property and is 
generally a function of temperature and pressure, although under most con- 
ditions for simple fluids it is a function of temperature alone. All gases and most 
simple liquids closely approximate Newtonian fluids. Polymeric fluids and 
suspensions may not follow the Newtonian law, and when they do  not they are 
termed non-Newtonian fluids. Non-Newtonian behavior falls under the science 
of rheology which will be discussed in Chapter 9. 

In writing Newton's law of viscosity with a positive sign, we have followed 
the convention of applied mechanics that all stresses are positive. Chemical 
engineers use a negative sign in relating stress and strain rate in parallel with 
heat and mass transport where, for example, heat flux is proportional to the 
negative of the temperature gradient. The difference in convention is unirn- 
portant. 

For Couette flow the shear force per unit area T ~ , ,  is constant, and since it 
is proportional to the local velocity gradient, it follows that the velocity profile 
is linear. I f  the no-slip boundary condition is satisfied at  both plates, 

from which 

(2.2.7) 

(2.2.8) 

Bird et al. (1960) point out that T~~ has another interpretation. With 
reference to the Couette problem, in the neighborhood of the moving surface at  
y = h the fluid acquires a certain amount of x momentum. This fluid, in turn, 
imparts some of its momentum to the adjacent layer of fluid, causing it to 
remain in motion in the x direction. Hence x momentum is transmitted to the 
fluid in the negative y direction. Consequently, rYx may be thought of as the 
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viscous flux of x momentum in the negative y direction. Bird et al. argue that 
this interpretation ties in better with other heat and mass transport behavior, 
although, as we have already observed, this analogy is not necessarily appro- 
priate in multidimensional flows. 

The units of viscosity are defined by Newton's law of viscosity and are 
shown for some of the common systems of units in Table 2.2.1. The ratio 

P 
P 

y = -  (2.2.9) 

occurs frequently in viscous flows and is termed the kitrematic viscosity. It has 
dimensions [Lz][T-'], and its units are given in Table 2.2.1. Of importance is 
that v has the same dimensions as the coefficient of diffusion in a mass transfer 
problem and may be interpreted as a diffusion coefficient for momentum. 

Tables 2.2.2 and 2.2.3 give the viscosity of water, air, and some other 
common gases and liquids. An important point to observe is that for gases the 
viscosity increases with temperature, whereas for liquids the viscosity usually 
decreases. The dependence on pressure is not strong. 

Table 2.2.1 
Units of Viscosity 

British Grav. Name Symbol SI cgs 

Viscosity P N s m-' dynes  cm-' Ib, s ftC2 
Pa s poise slug ft-' s - '  

Kinematic v m 2  s- '  cm2 s - '  f t 's- '  
viscosity 

Table 2.2.2 
Viscosity of Water and Air a t  Atmospheric Pressure" 

Water Air 

Kinematic Kinematic 
Temperature Viscosity Viscosity Viscosity Viscosity 

T /.l x lo3 v x l o 6  p x los  v x los  
K "C Pa s m's- l  Pa s m's-l 

273 0 
293 20 
300h 27 
313 40 
333 60 
353 80 
373 100 

-~ 

1.787 1.787 1.716 1.327 
1.002 1.004 1.813 1 SO5 
0.823 0.826 1.853 1.566 
0.653 0.658 1.908 1.692 
0.467 0.474 1.999 1.886 
0.355 0.365 2.087 2.088 
0.282 0.294 2.173 2.298 

"After Bird et al. (1960). 
bAfter Lienhard (1987). 
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Table 2.2.3 
Viscosity of Some Gases a t  Atmospheric Pressure and Some Saturated Liquids” 

Kinematic 
Temperature viscosity viscosi ty 

?’ p x los  x 105 

K “C Pa s rn‘s-‘ 

Gas 

Hydrogen 300 27 0.896 10.95 
Carbon dioxide 250 - 23 1.259 0.58 1 

300 27 1.496 0.832 
350 77 1.721 1.119 

Carbon monoxide 300 27 1.784 1.567 
Ni trogcn 300 27 1.784 1.588 
0 x y ge I 1  3 00 27 2.063 1.586 

Lzqut d p x l o 3  v x l o h  

Carbon dioxide 260 - 13 0.115 0.115 
280 7 0.092 0.104 
300 27 0.059 0.088 

Freon 12 300 27 0.254 0.195 
Ethyl alcohol” 293 20 1.194 1.513 
Mercury 300 27 1.633 0.12 
Glycerin 293 20 1412. 1120. 

”After Leinhard (1987). 
“Viscosity from Bird et al. ( 1  960); kinematic viscosity calculated. 

The reason for the different behaviors of viscosity with temperature lies in 
the different mechanisms of momentum transport in gases, where the molecules 
are on average relatively far apart, and in liquids, where they are close together. 
The origin of shear stress arises from molecular motions in which molecules that 
move from a region of higher average transverse velocity toward a region of 
lower average transverse velocity carry more momentum than those moving in 
the opposite direction. This transfer of excess molecular momentum manifests 
itself as a macroscopic shear. In a gas the momentum transport of the molecules 
from a region of lower to higher velocity, or vice versa, is proportional to the 
random thermal motion or mean molecular speed. Calculation leads to a 
coefficient of “momentum diffusivity” or kinematic viscosity 

u -  Cl (2.2.10) 

where 1 is the mean free path between collisions and C is the mean molecular 
speed, a quantity that increases as the square root of the absolute temperature. 

In a liquid the situation is considerably different. Due to the close 
molecular packing, the molecules have a preferred motion because they acquire 
sufficient activation energy to “jump” to a neighboring vacant lattice site. The 
velocity gradient normal to the main direction of motion, duldy,  is proportional 
to the shear stress ‘T,~ multiplied by exp(-AGlRT), where AG is the activation 
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Figure 2.2.2 Reference stresses at point x in  fluid. 

energy for the molecule to escape to a vacant site in the fluid, R is the gas 
constant, and T is the absolute temperature. The exponential term characterizes 
the probability of a molecule in a fluid at  rest escaping into an adjoining “hole.” 
For a fluid flowing in the direction of the molecular jump, this probability is 
increased in proportion to the shear stress because of the additional work done 
on the molecules by the fluid motion. If we replace T>,* by ~ ( d u l d y ) ,  the velocity 
gradient terms cancel, and it follows that the viscosity of a liquid is proportional 
to exp(AGIRT). The exponential decrease of viscosity with temperature agrees 
with the observed behavior of most liquids. 

We next generalize the Newtonian viscosity law to three dimensions. To do 
so, we must recognize that the description of stress at  a point in a fluid depends 
on the orientation of the surface element on which it acts. In rectangular 
Cartesian coordinates we choose as the reference stresses at point x and time t 
the values of the stresses exerted on surfaces in the positive x, y, and z 
directions, respectively (Fig. 2.2.2). Each of these reference stresses are vectors 
o(i), a(j), a(k). More generally, the stress on a surface having any orientation n 
at point x can be expressed in terms of the reference stresses. These stresses may 
be written in terms of their components as 

(2.2.11 ) 

The first subscript on T indicates the axis to which the face is perpendicular (i.e., 
the surface orientation), and the second the direction to which the shear stress is 
parallel (i.e., the force component; see Fig. 2.2.3). 

The nine reference stress components, each of which depends on position x 
and time t, and referred to as the stress tensor components. In Cartesian tensor 
notation we may write 

cr, = TI,”, (2.2.12) 
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Figure 2.2.3 Cartesian components of the reference stresses (stress tensor components). 

The stress tensor thus allows us to completely describe the state of stress in a 
continuum in terms of quantities that depend on position and time only, not on 
the orientation of the surface on which the stress acts. More precisely, the stress 
tensor should be referred to as a “tensor of second order” or “tensor of second 
rank” because its components transform as squares of the coordinates. We shall, 
however, simply use the term tensor, since tensors of order higher than second 
generally are not dealt with in fluid mechanics. We note in passing that a vector 
is a ‘‘tensor of first order,” its components transforming like the coordinates 
themselves, and a scalar is a “tensor of zeroth order,” a scalar being invariant 
under coordinate transformation. 

The off-diagonal or shear terms in the stress tensor are symmetric; that is, 

rr, = T , ~  i # j (2.2.13) 

This means that the stress tensor has only six independent components. 

as follows: 
1. 
2. 

The assumptions of a Newtonian fluid generalized to three dimensions are 

The fluid is isotropic; that is, the properties are independent of direction. 
In a static or  inviscid fluid the stress tensor must reduce to the hydrostatic 
pressure condition; that is, 

(2.2.14) 

3. The stress tensor T,/ is at  most a linear function of the rate-of-strain tensor 
F,, ,  where 

(2.2.15) 

With these assumptions it can be shown (see, for example, Batchelor 1967) 
that the expression for the stress tensor in a Newtonian fluid becomes 
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where 

2.3 

(2.2.17) 

is the dilatation. 
For constant-density flows where V. u = 0, the stress tensor components in 

rectangular Cartesian coordinates x ,  y, z with velocity components u, u, w are 

Thermal Conductivity and Heat Transport 

(2.2.18) 

The transfer of heat in a fluid may be brought about by conduction, convection, 
diffusion, and radiation. In this section we shall consider the transfer of heat in 
fluids by conduction alone. The transfer of heat by convection does not give rise 
to any new tr'dnsport property. I t  is discussed in Section 3.2 in connection with 
the equations of change and, in particular, in connection with the energy 
transport in a system resulting from work and heat added to the fluid system. 
Heat transfer can also take place because of the interdiffusion of various species. 
As with convection this phenomenon does not introduce any new transport 
property. I t  is present only in mixtures of fluids and is therefore properly 
discussed in connection with mass diffusion in multicomponent mixtures. The 
transport of heat by radiation may be ascribed to a photon gas, and a close 
analogy exists between such radiative transfer processes and molecular transport 
of heat, particularly in optically dense media. However, our primary concern is 
with liquid flows, so we do not consider radiative transfer because of its limited 
role in such systems. 

If a temperature gradient is maintained in a fluid between two points, there 
will be a flow of heat from the region of higher to lower temperature. Fourier's 
law of heat conduction states that there is a linear relation between this heat 
flux and the temperature gradient. By analogy with the Couette flow problem, 
consider two fixed plates separated by a distance h between which is contained a 
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heat-conducting fluid. The upper plate is maintained at  a temperature TI that is 
slightly greater than the temperature T ,  at which the lower plate is maintained 
(Fig. 2.3.1). The fluid in contact with each plate is assumed to be at  the 
temperature of the plate with which it is in contact (the no-temperature jump 
condition). Heat must be supplied at  the upper plate and the same amount 
removed at  the lower plate to maintain an equilibrium temperature distribution. 
For this one-dimensional problem where T = T( y ) ,  we may write Fourier’s law 
as 

(2.3.1) 

where the limiting differential form supposes the plate separation distance h to 
approach zero. Here, q,, is the heat flux in the positive y direction, and the 
transport coefficient k is the coefficient of thermal conductivity. The analogy 
with momentum transport is evident at  least in one dimension. 

In a fluid in which the temperature varies in all three directions, Fourier’s 
law may be written 

q = - k V T  (2.3.2) 

where q is the vector rate of heat flow per unit area. Note that because heat flux 
is a vector, it has three components, whereas the shear stress or momentum flux 
is a tensor having nine components. 

Since most fluids are isotropic, the coefficient k has no directional charac- 
teristics. This assumption is not valid for some solids, such as crystalline solids 
and laminated materials. 

The units of thermal conductivity are defined from Fourier’s law and are 
shown for some of the common systems of units in Table 2.3.1. The thermal 
diffusivity defined by 

(2.3.3) 

Figure 2.3.1 Temperature distribution between parallel plates. 
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Table 2.3.1 
Units of Thermal Conductivity and Diffusivity 

~~ 

Name Symbol SI cgs British 

Thermal 

Thermal a m 2 s - '  em's-' 

k W m-'  K- '  cal s cm-' Y - '  Btu hr-'  ft- '  "F 

ft2 s- '  
conductivity J m- '  K-' s-l  

diffusivity 

Table 2.3.2 
Thermal Conductivity and Diffusivity of Some Gases at Atmospheric Pressure and Some 

Saturated Liquids" 

Thermal Thermal 
Temperature Conductivity Diffusivity 

T k x 10' (Y x l o s  

K "C W r n - l  K - '  m2 s - '  

Gas 

Hydrogen 
Carbon dioxide 

Carbon monoxide 
Nitrogen 
Oxygen 

Liquid 

Carbon dioxide 

Freon 12 
Ethyl alcohol" 
Mercury 
Glycerin 
Water 

3 00 
250 
3 00 
350 
300 
3 00 
300 

260 
280 
300 
3 00 
293 
300 
293 
273 
300 
373 
400 
500 
600 

27 
-23 

27 
77 
27 
27 
27 

- 13 
7 

27 
27 
20 
27 
20 

0 
27 

100 
127 
227 
327 

18.2 
1.288 
1.657 
2.047 
2.525 
2.59 
2.676 

k 

0.123 
0.102 
0.076 
0.069 
0.167 
8.34 
0.285 
0.575 
0.608 
0.68 1 
0.686 
0.635 
0.48 1 

15.54 
0.740 
1.059 
1.481 
2.128 
2.22 
2.235 

a x 10' 

0.584 
0.419 
0.146 
0.539 
0.891 

0.962 
1.368 
1.462 
1.683 
1.726 
1.463 
1.108 

44.1 

"Lienhard (1987). 
'Conductivity from Bird et al. (1960); diffusivity calculated. 
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occurs in transient heat conduction problems. Here, cp is the specific heat at  
constant pressure. For an incompressible material cp = c ,  = c, where c, is the 
specific heat a t  constant volume. The quantity pc, is just the volumetric heat 
capacity. Like kinematic viscosity, a has dimensions [L2][T-'] and is a measure 
of the rate a t  which heat is transported through a material. 

Table 2.3.2 gives the thermal conductivity and diffusivity of some common 
liquids. Table 2.3.3 gives the same quantities for air and liquid sodium. An 
interesting observation from the data of Table 2.3.3 is that the thermal 
diffusivity for liquid sodium and air, which is a measure of the rate at which 
heat is transported, is of the same order, although the thermal conductivity of 
sodium is some thousand times larger. 

Brenner & Edwards (1993) have examined mixed systems of materials of 
the same thermal diffusivity but differing thermal conductivity, emphasizing that 
the resultant effective diffusivity of the mixed system on the macroscale is not a 
constant scalar diffusivity but rather an anisotropic tensor diffusivity. This point 
is illustrated by the simple example of a laminated material, composed of 
alternating layers of equal diffusivity air a and liquid metal m of thicknesses 1, 
and I,,, which extends to infinity in all three spatial directions. Applying the 
formulas for parallel and series conductivities, the effective diffusivity in the 
direction parallel to the strata is just ii,, = a, = a,. In the limit where k, % k,, 
the relation for the effective diffusivity in the direction perpendicular to the 
strata reduces to (Brenner & Edwards 1993) 

(2.3.4) 

where +, = / , / ( l a  + l n r )  ( i  = a, m)  is the volume fraction of the phase i. The 
effective diffusivity perpendicular to the strata is seen to be small because of the 

Table 2.3.3 
Thermal Conductivity and Diffusivity of Air a t  Atmospheric 

Pressure and of Liquid Sodium 

Thermal Thermal 
Temperature Conductivity Diffusivity 

T k (Y x los  

Substance K "C W m- '  K - '  mz  s - '  
~~~~~ ~~ 

Air' 300 27 2.61 X 10 ' 2.20 
500 227 3.95 5.44 
700 427 5.13 9.46 
900 627 6.25 14.22 

Sodium' 473 200 8.15x 10 4.78 
673 400 7.12 6.58 
873 600 6.27 5.25 

~~~~~~~ 

'Lienhard (1987). 
hCalmlated from data in Weast (1986). 
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low thermal conductivity of the air coupled with the high density of the metal. 
Thus, although each of the materials has the same isotropic thermal diffusivity, 
the effective macroscale diffusivity is highly anisotropic. 

As with viscosity, the thermal conductivity of gases increases with increas- 
ing temperature, whereas for most liquids it decreases with increasing tempera- 
ture, although the reason for this decrease is somewhat different than for 
viscosity. Polar liquids, like water, may be exceptions, exhibiting a maximum in 
the curve of thermal conductivity versus temperature. Also, as with viscosity, the 
effect of pressure is small. 

To explain the temperature behavior of thermal conductivity, we note that 
by analogy with Y - 21 the thermal diffusivity for gases is given by 

CY - 21 (2.3.5 a) 

or 

k - pc,d (2.3.5b) 

Thus, the thermal conductivity, like viscosity, increases as the square root of the 
temperature. Bridgman (1923) argued that for a liquid the mean free path may 
be identified with the lattice spacing 6. The volumetric heat capacity will be 
inversely proportional to the cube of this spacing, so pc , l -  6 -2, with the 
dimensional factor in the proportionality equal to the Boltzmann constant. 
Bridgman also argued that the mean speed of the energy transfer due to 
molecular collisions is proportional to the sound speed in the liquid cllq, just as 
in a low-density gas. I t  follows that 

k - c1,,6 - 2  (2.3.6) 

The sound speed in a liquid decreases with increasing temperature for most 
liquids, as does 6 -2 ,  so the conductivity decreases. Polar liquids are exceptions, 
and, for example, in water the sound speed increases with temperature. The 
decrease in S -‘ is insufficient to compensate this increase, so the conductivity of 
water increases with temperature, as observed earlier. 

2.4 Diffusivity and Mass Transport 

A transport of mass or “diffusion” of mass will take place in a fluid mixture of 
two or more species whenever there is a spatial gradient in the proportions of 
the mixture, that is, a “concentration gradient.” Mass diffusion is a consequence 
of molecular motion and is closely analogous to the transport of heat and 
momentum in a fluid. 

Consider a two-component or binary system, for example, a glass of water 
into which a drop of colored dye is injected. As is known from experience, the 
dye will diffuse outward from the point of injection where the concentration is 
highest to the other portions of the water where there is no dye. The transport 
of the dye molecules is equal and opposite to the transport of the water 
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molecules, and after a sufficient time an equilibrium state is achieved of a 
uniform mixture of dye and water. This is “ordinary” binary diffusion, which 
will be the principal subject of our later analyses. 

A diffusional flux may also be induced by imposing a pressure gradient on 
the system. This is the basis of centrifugal separations of mixtures, discussion of 
which is reserved for Section 5.5. In solution mixtures not subjected to high 
pressure gradients, the pressure diffusion effect is, in general, small. Diffusion 
can also be brought about by a temperature gradient, and this diffusional effect 
is known as the Soret effect. It too is usually small, provided the temperature 
gradients are not large. We shall not consider thermal diffusion further. Finally, 
external forces such as an electric field or gradient in a magnetic field can bring 
about diffusive effects if there are molecules or particles in the mixture that are, 
respectively, ionic or magnetic. The transport of particles by the application of 
magnetic fields falls under the subject of magnetohydrodynamics and will not be 
covered in this book. Ionic diffusion set up under the action of an electrical field 
is discussed separately in the following section, where electrical conductivity and 
charge transport are examined. 

In a solution or mixture there are a variety of ways of defining con- 
centration. Before introducing some of these, let us recall a few fundamental 
definitions. Using the example of a water molecule, we note that its mass is 
made up of the mass of an oxygen atom plus the mass of two hydrogen atoms: 
16 + ( 2  x 1) = 18. This relative mass expressed in grams represents an amount 
of water called a mole. The mass of a mole of substance is called the molar mass 
M and in units kg kmol-’ has the same magnitude as the molecular weight. The 
molar mass of water is thus 18 kg kmol-’ or 18 x 10 - 3  kg mol-I. In general, m 
grams of a substance is equal to n = m / M  moles of that substance. 

Consider now a solution made up of i species. The two basic concentration 
units used are the mass concentration (density) and molar concentration, 
defined, respectively, by 

(2.4.1) 

(2.4.2) 

Two related dimensionless concentrations are the mass fraction and molar 
(mole) fraction, defined, respectively, by 

m, mass of species i 
(kg m-3)  

” 1  = V = volume of solution 

c = - =  (mol m-’) n,  no. of moles of species i 
, v  volume of solution 

p ,  mass concentration of species i 
w = - =  

‘ P  mass density of solution 

c, 
2 = 

The mean molar mass of the mixture in kgmol-’is 

molar concentration of species i 
molar density of solution 

M = -  - P  
C 

(2.4.3) 

(2.4.4) 

(2.4.5) 

Some useful formulas for concentrations are given in Table 2.4.1. 
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Table 2.4.1 
Formulas for Concentrations 

Mass Molar  

Basic Useful Basic Useful 

m, = n , ~ ,  p, = c , ~ ,  2 w, = 1 

There are a number of definitions of the "average" velocity characterizing 
the bulk motion of a multicomponent system, where each species is moving at a 
different speed, just as there are for concentration. Often the solvent velocity is 
used as the reference velocity. Another reference velocity is the mass average 
velocity familiar in fluid mechanics and defined by 

u =  - 1 c P I U ,  

P 
(2.4.6) 

The quantity pu is the mass flux through a unit area normal to u. A molar 
average velocity u ' ~  may be correspondingly defined by 

(2.4.7) 

where cu::' is the molar flux through a unit area normal to u". In flow systems 
one may also be interested in the species velocity u, with respect to the averaged 
velocity u or  ui' (Bird et al. 1960). 

The actual choice of reference velocity is arbitrary, and in sufficiently 
dilute solutions the distinction is unimportant since they all become approxi- 
mately the same. Thus at  infinite dilution u = u", and also in the special cases 
MI = M 2 = * * = M for any concentration. I t  follows that the greater the 
differences in the molar masses of the species present, the more dilute must the 
solution be for the approximation u=ui'. to be valid. 

The terms in the sums of Eqs. (2.4.6) and (2.4.7) represent the individual 
mass and molar fluxes of each species i with respect to fixed coordinates and are 
written, respectively, 

j j  = plu,  (kg m-2 s - l )  (2.4.8) 

j: = c,u, (moI m- ' s - ' )  (2.4.9) 
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In flow systems the mass and molar fluxes, with each species motion referred to 
the mass average and molar average velocities are, respectively, 

J, = pl(u,  - u) (2.4.10) 

The fluxes p,u and C , U "  simply represent the bulk convective fluxes. In examin- 
ing systems containing reacting chemical species it is generally useful to use 
molar fluxes. 

At this point let us restrict our considerations to a binary system in which 
there is a spatial concentration gradient. Fick's first law of diffusion states that 
there is a linear relation between the species flux and the concentration gradient: 

J ,  = i, - P , U  = -pD,,Vw, (2.4.12) 

where D I 2  = D,, is the mass diffusivity or mass diffusion coefficient in a binary 
system, with units of m2 s-'. These equations show that the species 1 diffuses 
relative to the mixture in the direction of decreasing mass or mole fraction in 
direct analogy with the transfer of heat in the direction of decreasing tempera- 
ture. In a binary mixture JI = -], and ]: = -];. 

A particular case of interest for liquids is constant p where 

J ,  = i l  - P,U= - D l 2 V p I  (2.4.14) 

The diffusion coefficient or diffusivity D, ,  is frequently referred to as the binary 
diffztsioiz coefficient, though often the term binary together with the subscripts is 
dropped. 

In gases the diffusivity is almost independent of composition, increases 
with temperature, and varies inversely with pressure. In liquids, on the other 
hand, diffusivity is strongly dependent upon concentration and generally in- 
creases with temperature. This contrasts with the thermal diffusivity and 
kinematic viscosity, which for most liquids decrease with increasing tempera- 
ture. Tables 2.4.2 and 2.4.3 give some typical gaseous and liquid diffiisivities for 
dilute systems. 

So far we have made no statement regarding the solution concentration, 
except when discussing a reference velocity and other than to observe that in 
liquids the diffusivity is a strong function of concentration. For example, with a 
ternary, instead of a binary, system there would be two concentration gradients, 
and the diffusive flux of each species could be affected by both concentration 
gradients. One instance where this is not so is that of infinitely dilute solutions 
for which each component is unaffected by the presence of the other. Here, 
Fick's law for the diffusive fluxes is simply 

(2.4.15) 
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Table 2.4.2 
Diffusivities of Some Dilute Gas Pairs at Atmospheric 

Pressure" 

Temperature Diffusivity 
T D , ~  x 105 

Gas Pair K "C in's-' 

CO,-N,O 273 0 0.96 
C0,-N, 273 0 1.44 

288 1.5 1.58 
298 25 1.65 

O,-N, 273 0 1.81 
H,-CO, 273 0 5.50 
H2-0, 273 0 6.97 

"After Roberts (1972). 
bAfter Bird et al. (1960). 

Table 2.4.3 
Diffusivities of Some Electrolytes and Nonelec- 

trolytes at Infinite Dilution in Water" 
~ 

Temperature Diffusivtty 
T D x 10' 

K "C m' s-l 

Electrolyte 

MgSO, 298 25 0.849 
CaCI, 298 2.5 1.335 
KCI 298 25 1.994 
NaCl 278 5 0.9 19 

288 15 1.241 
298 25 1.612 
308 35 2.031 

Nonelectrolyte 

Sucrose 274 1 0.242 
298 25 0.523 

Glycine 298 25 1.064 
Urea 298 2.5 1.382 

"After Longsworth (1972). 

J Y - j Y -  - C,U" = - D,VC, (2.4.16) 

Keep in mind that the formulation is valid only for dilute solutions. 
The diffusivity for dilute liquid solutions may be estimated theoretically 

from simple hydrodynamic considerations. Estimates for concentrated solutions 
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are far more difficult. The dilute solution analysis will be carried out in greater 
detail when we examine Brownian motion, but for the moment we content 
ourselves with an order-of-magnitude estimate with concentration effects neg- 
lected. It is assumed that the solute particle diffusion through the liquid solvent 
is a consequence of its translational kinetic energy, which is about kT (per 
particle), where k is the Boltzmann constant. On the other hand, viscous forces 
exert a drag on the particle that resists its thermal motion. From Stokes’ drag 
law for a low Reynolds number flow, the force is proportional to p 2 C l d , ,  where 
d l  is the mean particle diameter and tc, is its mean speed. The work done by the 
drag over the mean distance 1 between collisions is therefore p 2 i l  d ,  1. Equating 
the work and energy and setting 

D , ,  - t i l l  (2.4.17) 

we see that 

(2.4.18) 

This result is applicable to dilute solutions of buoyant particles as well as 
molecules. For molecules, assuming a cubic lattice with the molecules touching, 
d ,  - 6 - ( V , / N , ) ” ’ ,  where 6 is the lattice spacing, V, is the molar volume of the 
solute particle 1, and N, is Avogadro’s number. Since p2 - exp(AG/RT), the 
diffusivity increases exponentially with temperature, and this is generally the 
observed behavior in liquids. 

2.5 Electrical Conductivity and Charge Transport 

In this section we consider the transfer of mass that takes place in a mixture of 
species when, under the action of an applied electric field, unequal electrical 
forces act on the different species as a result of differences in the species charge. 
This mass transfer is termed migration in an electric field or simply electro- 
migrution. It is really a diffusion in a “preferred” direction and follows from the 
fact that the electric field accelerates a charged particle, which subsequently 
collides with other solute or solvent particles. The result is a migration rather 
than directed movement in the direction of the field. This is quite analogous to 
the particle diffusion that takes place in a concentration gradient. 

For simplicity we discuss mainly solutions sufficiently dilute that the solute 
species and their gradients do  not interact. The solution might be an un-ionized 
solvent containing ionized electrolytes. If a gradient in electrostatic potential is 
applied to the solution, there will be an electric force exerted on the ion species, 
which is proportional to the potential gradient. The electric field E is the 
negative gradient of the electrostatic potential: 

E =  -V+ (2.5.1 ) 
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The force exerted on a particle is the magnitude of the particle charge multiplied 
by the sign of the charge and the electric field. The force per mole may therefore 
be written as 

Here, F is Faraday’s constant equal to the charge of 1 mole of singly ionized 
molecules, and z ,  is the charge number of the species i. Note that 

F = N,e 

= 6.022 x mole-’ x 1.602 x coulombs (2.5.2) 

= 9.65 X lo4 C mol-’ (singly ionized) 

where e is the elementary charge. 
A statement of the constitutive relation analogous to those for mass, heat, 

and momentum is that the flux due to migration in an electric field is 
proportional to the force acting on the particle multiplied by the particle 
concentration. The molar flux in stationary coordinates is then 

j: = -u,z,Fc,V+ = u,z,Fc,E (mol m-’s-’) (2.5.3) 

The proportionality factor u, is a transport property, like thermal conductivity 
or  diffusivity, called the mobility because it measures how “mobile” the charged 
particles are in an electric field. The mobility may be interpreted as the average 
velocity of a charged particle in solution when acted upon by a force of 
1 N mol-’. The units of mobility are therefore mol N-’ m s-’ or mol s kg-’. The 
concept of mobility is quite a general one, since it can be used for any force that 
determines the drift velocity of a particle (a magnetic force, centrifugal force, 
etc.). The flux relation can also be expressed in terms of mass by 

j ,  = -u,z,Fp,Vc$ = u,z,Fp,E (kgm-’  s-’)  (2.5.4) 

In electrochemical studies the molar formulation is almost always used, and we 
shall follow that practice. 

Diffusivity and mobility are directly related. This is readily shown by 
considering an infinitely dilute solution and applying the simple kinetic argu- 
ments used to derive the temperature dependence of diffusivity. For a particle 
undergoing diffusion as a consequence of its translational kinetic energy, D - il 
(Eq. 2.4.17), with ts the mean particle speed and 1 the mean distance between 
collisions. Multiplying and dividing the right-hand side of this relation by 
Avogadro’s number and the viscous drag force exerted on a particle, we obtain 

D - u(Force x 1)N,  (2.5.5) 

Here, u is the mobility defined with a unit force per mole. The term in 
parentheses is the work done per particle by the viscous drag, and it is of the 
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order of the kinetic energy per particle kT. From the definition of the gas 
cons ta n t . 

R = k N ,  (J mol-' K - I )  (2.5.6) 

we arrive at the relation 

D ,  = R7v, (2.5.7) 

This important equation is known as the Nernst-Einstein equation, which we 
shall discuss in more detail later. 

The motion of charged species gives rise to a current, which, expressed as 
current density i, is 

i = F 2 z,j p (Am-')  ( 2 . 5 . 8 )  

I f  there are no concentration gradients and no flow, the motion of the charge is 
due only to the applied electric field and 

i = crE = -uV+ (2.5.9) 

where 

is the electrical conductivity of the solution. Equation (2.5.9) is readily recog- 
nized as an expression of Ohm's law. When ordinary diffusion is present and 
there are concentration gradients, Ohm's law does not hold because there is a 
contribution to the current from diffusion. 

To compare electrolyte conductivities with concentration normalized, we 
define a molar conductivity by 

(2.5.1 1) 2 2  A,  = 2 = F z ,  u,  (S m2  mol- ')  
c, 

This is the conductivity a solution would have i f  there were 1 mole of the 
substance in 1 m3 of the solution. Now the molar conductivities of two 
electrolyte solutions can often most usefully be compared if the charges of the 
charge carriers in the solutions are the same. If there are singly charged ions in 
one solution and doubly charged ions in another, the same quantities of 
electrolytes would contain different amounts of charge. To get around this, we 
define a conductivity in which a mole of charge is compared, that is, 1 mole of 
ions divided by z , ,  which is termed one equivalent of the substance. The molar 
conductivity so defined is termed the equivalent conductivity and is given by 
AilzlI--'  with units of S m2 equiv-'. Equivalents are not recognized in SI units. 
We have discussed them here because conductivities frequently appear in the 
literature as equivalent conductivities. 
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Table 2.5.1. 
Molar Conductivity of Some lons at  Infinite Dilution in Water" 

Molar Molar 
Temperature Conductivity Temperature Conductivity 

T A X  lo3  T A X  lo3 

Ion K "C Sm'moI-'  Ion K "C Sm'moI-'  

H' 288 15 
298 25 
308 35 

Li + 298 25 
Na' 288 15 

298 25 
308 35 

Ca'+ 298 25 
c u 2 +  298 25 
La3+ 298 25 

30.1 
35.0 
39.7 
3.87 
3.98 
5.01 
6.15 

11.9 
10.8 
20.0 

OH-  298 25 
CI - 28 8 15 

298 25 
308 35 

Br- 288 15 
298 25 
308 35 

HCO, 298 25 
so:- 298 25 

NO, 298 25 

19.8 
6.14 
7.63 
9.22 
6.33 
7.83 
9.42 
7.14 
4.45 

16.0 

"After Atkinson (1972). 

Table 2.5.1 lists the molar conductivities of some ions in dilute solution. 
There is a strong temperature dependence and, as with mass diffusivity, the 
conductivity increases exponentially with absolute temperature. The molar 
conductivity also depends on the electrolyte concentration falling off with 
increasing concentration, the drop being more rapid for weak electrolytes than 
for strong ones (see, e.g., Castellan 1983). 
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Problems 

2.1 Comparison of the tabulated momentum, thermal, and mass diffusivities 
(v, a, D )  shows them to be of the same order for dilute gases but markedly 
different for liquids. Using molecular arguments, briefly explain why they 
should be the same for gases and different for liquids. Explain also the 
differences among v, a, and D for liquids. 
Show that for a dilute binary solution, where the solute mole fraction is x 1  
and the molar masses of solute and solvent are, respectively, M ,  and M,, 
that the mass average velocity and molar average velocity are approxi- 
mately the same if the diluteness criterion x , l ( M , I M , )  - 1) < 1 is satisfied. 
Show that in a binary system the mass flux with respect to the mass 
average velocity is J1 = -J2 and that the molar flux with respect to the 
molar average velocity is 1: = -/:. 
The annular gap between two infinitely long concentric cylinders of 
opposite charge is filled with water. Charged colloidal particles are to be 
moved from the inner cylinder (the source) to the outer cylinder (the 
collector) as a result of the voltage drop across the gap. The particle 
volume concentration is sufficiently small that each particle may be 
assumed to behave independently of the others. 

The width of the annular gap is 0.02111, and there is an applied 
voltage drop of 2 V  across the gap.  The particles are spherical, have a 
radius a of 1 p m ,  a density p twice that of water, and carry a charge q of 
10 - I 4  C. The temperature is constant at  300 K, and gravitational effects 
may be neglected. 

The drag force on a spherical particle moving in water at  low speeds 
(low Reynolds number) is F = -67rpaU, where p is the viscosity of the 
water and U is the particle speed. 
a. Carry out an order-of-magnitude analysis to show that the particle 

inertia can be neglected. 
b. Define the particle diffusivity. 
c. Give a criterion to measure the effect of diffusive forces with respect to 

electrical forces. Is diffusion important? 
d. Estimate the particle velocity at  the collector surface. Assuming the 

particles start from rest a t  the source, estimate their time to traverse 
the gap. 

2.2 

2.3 

2.4 



3 Equations of Change 

3.1 Isothermal 

Here we set out the equations of conservation of mass and momentum for a 
viscous Newtonian fluid of uniform and homogeneous composition. These two 
equations together with the appropriate boundary conditions are sufficient to 
describe the changes in velocity with respect to position and time for a viscous, 
isothermal flow of a uniform and homogeneous fluid. In the following sections 
we shall write the energy conservation, species conservation, and charge con- 
servation equations, as well as the appropriate momentum equation together 
with the constitutive relations needed to describe changes in temperature, 
concentration, and other variables. 

The equation of conservation of mass may be derived by considering the 
fixed control surface shown in Fig. 3.1.1 through which the fluid is flowing. 
Now the flux of mass through the surface must equal the decrease of mass 
within the volume due to unsteadiness, or 

Applying Gauss’s theorem, we get 

Is pus d A  = V. pu dV I, 
It follows that 

(3.1.1) 

(3.1.2) 

(3.1.3) 

Since this is true for every control volume, 
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dP - + v . p u = o  
d t  

or 

Figure 3.1.1 Fixed control surface through which fluid flows. 

9 + pv. u + (u .V)p = 0 
d t  

(3.1.4) 

(3.1.5) 

In terms o f  the material derivative defining a change in a quantity moving 
with a fluid element (Eq. 2 .2 .3 ) ,  we have 

9 + p v . u = o  
Dt  

(3.1.6) 

For the special case where p is constant following a fluid particle, DplDt = 0 
and 

v . u = 0  (3.1.7) 

This is the equation of continuity for “incompressible” flow. 

applied to a fluid particle may be written as 
Conservation of momentum as expressed through Newton’s second law 

D u  
P = f h o d y  + fsud (3.1.8) 

where the applied force per unit volume on the fluid particle is divided into 
surface and body forces. The body forces are proportional to the total volume 
or mass of the fluid element, examples of which are the gravitational body force, 
electrical body force, and electromagnetic body force. Here, only the gravita- 
tional body force is considered, which per unit volume is 
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f b d y  = P g  (3.1.9) 

where g is the local gravitational acceleration. 

through Eq. (2.2.12), where 
The surface forces are those applied by the external stresses defined 

(3.1.10) 

Here the divergence of the stress tensor is the net force per unit volume acting 
on a fluid element. Note that V . 2  is not a simple divergence because 5 is a 
dyadic and not a vector, although the term is interpretable physically as a rate of 
momentum change. 

From Eqs. (3.1.8) to (3.1.10) we may write 

(3.1.11) 

In Cartesian tensor notation, substituting for T,, from Eq. (2.2.16), we have 

This equation is usually referred to as the Navier-Stokes equation. 
In the special case of incompressible (constant-density ) flow, d u k  / 

dx,  = V * u  = 0 and the dilatation term vanishes. Further, i f  the viscosity p is 
constant, then 

a du, d zu ,  d du ,  

dx,  dx, d x ,  
- { P ( 2 + -) } = P 7 + P - dx ,  ( -) d x ,  

= p v 2 u  (3.1.13) 

In this important special case the Navier-Stokes equation reduces to 

D U  

D t  
p - = -vp + p v 2 u  + p g  (3.1.14) 

For incompressible, isothermal, single-phase flows where p may be treated 
as constant, the above equation, together with the continuity equation, is 
sufficient to describe the flow under appropriately specified boundary con- 
ditions. For example, in the case of a fluid-solid interface the no-slip condition 
will generally be applied, wherein 

u f l u i d  = Usolid (3.1.15) 

At a stationary boundary this implies zero tangential velocity of the fluid 
particle at  the surface, and, where the boundary is also impermeable, it implies 
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3.2 

zero normal velocity of the fluid particle. This latter condition will not apply if  
there is blowing, suction, evaporation, or condensation at  the surface. 

At a fluid-fluid interface, with interfacial tension neglected, we shall 
generally apply the conditions of constancy of normal and tangential velocity 
components, pressure, and shear across the interface. Discontinuities in some or 
all of these quantities are, however, not precluded by the conservation con- 
ditions. 

Noniso thermal 

Nonisothermal conditions will prevail in a fluid flow system when there is an 
appreciable temperature change in the fluid resulting from heating (or cooling) 
either by heat addition or generation. Examples are the release of heat within 
the fluid by chemical reaction, electrical heat generation, the transfer of heat 
into the fluid by a heated surface, heat generated within the fluid by viscous 
dissipation as in high-speed gas flows, rapid polymer extrusion, or high-speed 
lubrication. In such cases the fluid system is no longer isothermal, and it is 
necessary to supplement the equations of conservation of mass and momentum 
with a conservation of energy equation. 

Heat energy, which is associated with temperature, is a form of energy 
distinct from either the kinetic energy associated with the mean fluid motion 
(that is, the plu12 energy) or the potential energy associated with position. Heat 
energy flows from one neighboring element to another when the temperatures 
are different. The heat energy of a fluid particle is defined by the internal energy, 
which depends on the local thermodynamic state. With e the internal energy per 
unit mass, we formulate the principal of conservation of energy mathematically 
as the first law of thermodynamics, which may be written in terms of specific 
properties (per unit mass) as 

Sq"= de - Sw (3.2.1) 

Here, q" is the heat supplied, e is internal energy, and w is the work done on the 
fluid. We shall only consider heat conduction and shall not discuss heat 
generation from chemical or electrical sources. 

Consider a fixed control surface enclosing a fluid element. It follows from 
the first law that the sum of the rate of increase of the internal and kinetic 
energies of the element must equal the sum of the rate at  which heat is being 
conducted across the surface into the fluid plus the rate at  which work is being 
done on the fluid by the stresses at  the surface and by the body forces. With the 
aid of the continuity equation (3.1..5), 

(3 .2 .2 )  
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Applying Gauss’s theorem and the condition that the resulting equation 
must be true for every control volume, we get 

or, in Cartesian tensor notation, 

d + pg,u, + - 7,1u, 
Dt d X /  

(3.2.3) 

(3.2.4) 

By decomposing the work term associated with the stress tensor, and then using 
the momentum equation, the Newtonian constitutive relation, and Fourier heat 
law, along with some manipulation, we obtain the following equation for the 
rate of change of internal energy (see, for example, Howarth 1953): 

(3.2.5) 

The dissipation function @ is the rate of dissipation of energy per unit time per 
unit volume, and is defined by 

or, in rectangular Cartesian coordinates, 

@ = 2 p  [ ( g)2 + ( %)2 + ( g12] 
+ p [ ( $ + $ ) 2 + ( g + $ ) 2 + ( z + z ) 2 ]  (3.2.7) 

p - + - + -  
at) d w ) 2  - 3  ( 2  d y  d z  

2 

The dissipation is a positive-definite quantity and represents the irreversible 
conversion of mechanical energy to thermal energy due to the action of fluid 
stresses. The remaining part of the stress work that goes into internal energy, 
-pdu, ldx, ,  represents reversible strain energy and can carry either sign. 

Two other useful forms of the energy equation give, respectively, the 
dependence of the rate of change of specific enthalpy h and specific entropy s on 
the dissipation and heat conduction. From Eq. (3.2.5) and the thermodynamic 
relations 

(3.2.8) 

these equations are shown to be expressible as 
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pl>t==+- D p  (&)+* 
ax, dx, 

(3.2.9) 

(3.2.10) 

Heat addition due to chemical reaction or electrical heating has not been taken 
into account but is readily done so by adding an appropriate source term to the 
right-hand sides of the energy equations as written. 

An important special case is that of incompressible flow. As discussed in 
Section 1.2, the term incompressible is something of a misnomer, since what is 
generally meant in fluid mechanics is constant density. However, a flow in 
which there are temperature gradients is not quite one of constant density since 
the density varies with temperature. But the criterion for a constant-density flow 
is that the flow velocity be small compared with the sound speed in the fluid; 
that is, the Mach number must be small. For a small Mach number the pressure 
changes are small. Therefore when evaluating the derivatives of thermodynamic 
quantities for an incompressible flow with an imposed spatial variation 
temperature, we must hold the pressure, not the density, constant (Landau 
Lifshitz 1987), whence 

& in 

(3.2.11) 

where the specific heat at constant pressure c p  = T(ds /dT) , .  
Provided the mean absolute temperature differences are small, the approxi- 

mation of constant density is still viable so long as the Mach number is small. 
That the temperature differences are small does not mean that the temperature 
gradients are necessarily so. For small Mach number and small temperature 
differences, the flow can be considered incompressible, that is, of constant 
density, with V. u = 0. With small temperature differences the fluid properties 
will be constant, and the energy equation reduces to 

DT 
- = aV2T 
Dt 

(3.2.12) 

where a is the thermal diffusivity and where the viscous dissipation @ has been 
neglected. Neglect of the dissipation term is satisfactory so long as the viscous 
heating is small compared with the conductive heat flow that arises from the 
temperature differences. This will generally hold except in those instances where 
there are large velocity gradients and the heat generated by viscous dissipation 
cannot be conducted away rapidly enough. An example is high-speed lubri- 
cation. 

'To complete the thermodynamic description of a homogeneous fluid 
system, we need to specify an equation of state relating three thermodynamic 
properties. We shall not generally be concerned with gases, but we note that 
away from the critical point for moderate and low densities the perfect or ideal 
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gas equation is normally a satisfactory description. Written in terms of density, 
pressure, and temperature the perfect gas relation is 

R 
M p = p  - T (3.2.13) 

where M is the molar mass and R is the gas constant 8.314 J K- '  mol--'. An 
alternative form, with volume in place of density, is 

p V =  nRT (3.2.14) 

since p = nM/V. 
As a first approximation we may write for liquids 

(3.2.15) 

or, in terms of specific volume v, 

where the subscript 0 denotes the reference value. Here, a is the thermal 
expansion coefficient or volume expansivity defined by 

(3.2.17) 

and p is the compressibility coefficient or isothermal compressibility defined by 

(3.2.18) 

Values of these coefficients are for water at  20°C and atmospheric pressure 
(Y = 2.1 x K - '  and p = 4.6 x lo -"  Pa-'. 

3.3 Multicomponent 

In setting down the conservation equations, we considered only fluids of 
uniform and homogeneous composition. Here we examine how these conserva- 
tion equations change when two or more species are present and when chemical 
reactions may also take place. In a multicomponent mixture a transfer of mass 
takes place whenever there is a spatial gradient in the mixture proportions, even 
in the absence of body forces that act differently upon different species. In fluid 
flows the mass transfer will generally be accompanied by a transport of 
momentum and may further be combined with a transport of heat. 

For a multicomponent fluid, conservation relations can be written for the 
individual species. Let u, be the species velocity and p ,  the species density, where 
the index is used to represent the ith species rather than the component of a 
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vector. The overall continuity equation developed earlier is valid for each 
species, provided no species are produced (or consumed). If, however, species 
are produced by chemical reaction, say at  a mass rate Y, kg m-3 s one must 
take this production into account when balancing the mass flux through a 
control surface. In this case the integral form of the continuity equation should 
be modified to 

giving 

JP, - + v.  p,u, = Y, 
at  

(3.3.1) 

(3 .3 .2 )  

The species production rate Y, must be obtained from chemical kinetics consider- 
ations and is dependent on the local thermodynamic state and the stoichiometric 
coefficients associated with the chemical reactions. 

In terms of the mass average velocity u, defined by pu = C p , ~ , ,  and mass 
flux with respect to the mass average velocity J , ,  defined by J ,  = p,(u, - u), the 
continuity equation for individual species, Eq. (3.3.2), can be rewritten in the 
form 

dp, + v .  p , ~  = -V- J, + Y, 
a t  

In terms of the material derivative, 

Dp, + p , ~ .  u = -V* J,  + Y, 
Dt 

(3.3.3) 

(3.3.4) 

Adding all the continuity equations for the i species, Eq. (3.3.2),  gives 

(3.3.5) 

But p = C p,, pu = C p,u,, and, since mass is conserved in a chemical reaction, 
C Y, = 0, whence the continuity equation for the mixture is identical to that for a 
pure fluid. 

The momentum equation, as represented by the Navier-Stokes equation, is 
not restricted to a single-component fluid but is valid for a multicomponent 
solution or mixture so long as the external body force is such that each species is 
acted upon by the same external force (per unit mass), as in the case with 
gravity. In the following section we consider external forces associated with an 
applied external field, which differ for different species. The reason for there 
being no distinction between the various contributions to the stress tensor 
associated with diffusive transport is that the phenomenological relation for the 
stress is unaltered by the presence of concentration gradients. This is seen from 
the fact that the stress tensor must be related to the spatial variations in fluid 
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properties in a tensorially appropriate manner, for example, second-order tensor 
to second-order tensor. In the Newtonian constitutive relation the stress tensor 
is linearly related to the rate-of-strain tensor. If a dependence of the stress on the 
spatial variation in concentration is assumed, then it must be related to a 
second-order tensor associated with this variation, for example, Vp,Vp,. But such 
a quantity is of higher order than the rate-of-strain tensor and, for consistency, 
should not be retained. 

The energy equation is also unchanged for a multicomponent mixture so 
long as the external force is, for example, that due to gravity, where each species 
is acted upon by the same external force. However, when concentration 
gradients are present, the phenomenological relation for the heat flux vector q 
does change from that for a pure fluid. For fluid mixtures the energy flux must 
be modified to incorporate an added flux arising from interdiffusion of the 
species. There is also an energy flux, termed the Dufour effect, arising from 
diffusive thermal conduction; however, it is usually small and will be neglected 
here. The modified phenomenological relation for the energy flux can be shown 
to be (Bird et al. 1960) 

q = 2 h,J, - kVT (3.3.6) 

where h,  is the partial specific enthalpy of the ith species, and J,  is the mass flux 
relative to the mass average velocity. The terms in h,  represent the transport of 
energy caused by interdiffusion, and include the transport of chemical potential 
energy. Equation (3.3.6) is the phenomenological relation normally employed in 
double diffusive problems of heat and mass transfer. 

In both the multicomponent continuity equation and in the energy flux 
relation given above, it is necessary to specify the multicomponent mass flux J, 
relative to the mass average velocity. The phenomenological relation for the 
mass flux in a general multicomponent system can be expressed as a sum of the 
diffusive flux due to concentration gradients (Section 2.4) plus a number of 
other diffusive fluxes. In particular, there is diffusion due to applied external 
forces, where the same force per unit mass does not act on all the species. An 
example is the diffusion that takes place when an applied electric field acts on a 
mixture of charged species (Section 2 . 5 ) .  This phenomenon will be treated 
separately in the following section. A diffusive flux termed pressure diffusion 
also arises from an imposed pressure gradient. For most molecular species this 
flux is generally small unless the pressure gradients are very large, as in 
centrifugal separations. For this reason pressure diffusion is neglected here and 
considered later in the context of centrifugal separations. The last diffusive flux 
is that due to temperature gradients, and it is termed thermal diffusion o r  the 
Soret effect. Like the Dufour effect, with which it is interrelated, thermal 
diffusion is generally small unless the temperature gradients are very large. I t  
will not be discussed further. 

The derivation of these various flux contributions may be found in the 
classic text by Hirschfelder et al. (1954). A summary of the resulting expressions 
is given in Bird et al. (1960).  The basis of the derivation for the ordinary 
diffusive flux is that the driving force is the chemical potential gradient, not the 
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concentration gradient. The ordinary diffusive flux, measured relative to the 
mass average velocity, can be shown from principles of nonequilibriu~n thermo- 
dynamics to be expressible in the form 

(3 .3 .7)  

Here, puI is the chemical potential, with the term in brackets representing the 
dimensionless driving force. The Bl1 are generalized diffusion coefficients for the 
pair i j  in the multicomponent mixture, defined such that they are consistent with 
Onsager's reciprocity relation (Van de Ree 1967). 

The chemical potential may be written in terms of the activity a as 

P/ = P ; ( T  P )  + RT In a, (3.3.8) 

where p; is independent of the solution composition. From this relation, Eq. 
(3 .3 .7)  can be put into the more familiar form 

(3.3.9) 

In the special case of an ideal solution, which generally implies dilute 
solutions, the activity can be replaced by the mole fraction, and Eq. (3.3.9) 
reduces to 

J ,  = f 2 M , M 1 9 , , V x ,  
I 

(3.3.10) 

For a binary mixture 

(3.3.11) 

which is one form of Fick's first law. We have replaced 9,2 by the diffusivity 
D , ,  of a pair in a binary solution since the two diffusivities are identical here. 

That Eq. (3.3.11) is the same as the previously given form of Fick's law 
follows from the definition 

c2 
J ,  = - - M,M,D12Vx, 

P 

or 

(3.3.12) 

With M = p ic ,  on substituting into Eq. (3.3.11),  we get 

(3.3.14) 
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Restricting our considerations to a binary system, we can write the 
continuity equation (Eq. 3.3.3) in the form 

(3.3 .. 15 ) 

where Y ,  is the mass rate of production of species 1 per unit volume 
( k g m  s ). Equivalently, in terms of molar fluxes, - 3  - 1  

(3.3.16) 

where R ,  is the molar rate of production of species 1 per unit volume 
(mol m-3 s- ' ) .  Because moles are not conserved, this equation is not a molar 
continuity equation. 

An important special case is that of diffusion in dilute liquid solutions. In 
that situation V - u  = 0, and Eq. (3.3.15) reduces to 

(3.3.17) 

The corresponding relation with molar concentration as the dependent 
quantity is obtained by dividing through by M ,  to give 

(3.3.18) 

With R ,  = 0 Eq. (3.3.18) is termed the convective diffusion equation. When, in 
addition, u = 0, the equation reduces to the ordinary diffusion equation, which 
is also referred to as Fick's second law ofdiffusion. It is applicable to diffusion 
in solids or stationary liquids and has the same form as the heat conduction 
equation in stationary media with constant thermal conductivity. 

3.4 Charged Species 

We saw in Section 2.5 that when a mixture of charged species is subjected to an 
applied electric field a mass transfer (migration) takes place. In a hydrodynamic 
system there are also contributions to the species flux due to ordinary convec- 
tion and diffusion, as discussed in the last section. Here, we wish to set down 
the appropriate equations of change governing the motion and behavior of 
species acted upon by an electric field. In doing so, we shall assume that the 
phenomenological relation defining the flux of the ith species due to diffusion 
plus electromigration will be that for a dilute solution. This is dictated not only 
by the general applicability of this approximation in electrochemical flow 
systems, even though it is only strictly applicable for dilute solutions, but also 
because of the complexity of dealing with a general flux relation of the form of 
Eq. (3.3.7).  In this regard we observe that Eq. (3.3.7) is still valid with charged 
species and an applied electric field, provided the chemical potential is under- 
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stood to be the electrochemical potential, which is a function of pressure, 
temperature, chemical composition, and the electrical state of the phase. The 
characterization of the electrical state of phases of different composition itself 
introduces a number of subtle questions (Newman 1991). Inevitably the phe- 
nomenological relations for concentrated solutions rest largely on empirical 
determinations of the generalized diffusion coefficients. 

For dilute solutions the flux contributions from diffusion, electromi- 
gration, and convection can be linearly superposed, whence from Eqs. (2.4.16) 
and (2.5.3) we have for the molar flux of the ith species: 

j = -v,z,Fc,V$ - D,Vc, + c,u (3.4.1) 

where the molar average velocity u". has been replaced by the mass average 
velocity u, since in sufficiently dilute solutions U" = u. In electrochemical 
systems it is convenient to use molar flux but not molar average velocity, since 
fluid dynamic solutions are expressed through the mass average velocity, for 
which a continuity equation can be written. From Eqs. (2.4.15) and (2.5.4) the 
corresponding mass flux is 

Recall that u, is the mobility, which is related to the diffusivity by the relation 
D ,  = RTu,. Equations (3.4.1) and (3.4.2) are called the Nernst-Planck equa- 
tions. 

Because of the motion of the charged species, there will be a current. 
Specifically, the current density is given by i = F C z,j','. Employing the dilute 
solution relation for the molar flux, we obtain 

(3.4.3) 

or 

where CT = F' C z ~ u , c ,  is the scalar electrical conductivity of the solution. The 
current is seen to be made up of contributions from the electric field, the 
concentration gradients, and the convection of charge. 

With current and electric fields present the laws of electrodynamics, as 
specified by Maxwell's equations, must be employed in addition to those of fluid 
mechanics. If there are no applied magnetic fields and if we neglect as small the 
magnetic field induced by the current, as well as any magnetic fields induced 
from time-varying electric fields, then the electrodynamic problem reduces to an 
electrostatic one. This problem can be specified through Poisson's equation 
relating the spatial variation in the electric field to the charge distribution, which 
for a medium of uniform dielectric constant is 

v(p=-pE 2 (3.4.5) 
E 
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Here, pE is the electric charge density (C m-3) .  The permittivity of the medium 
E is equal to the permittivity of a vacuum, E~ = 8.854 x 10-l2 C2 N-’ m-’ 
(C V-’ m - ’ )  multiplied by the dielectric constant also known as the relative 
permittivity E , ,  which is dimensionless. For water E ,  = 78.3 at 25°C. 

The electric field is coupled with the fluid mechanics through the Lorentz 
relation for the force on a charged particle: 

f, = PEE (3.4.6) 

where f, is the electric body force per unit volume and the charge density is 

(3.4.7) 

In the important case where the solution is electrically neutral, 

2 z,c; = 0 (3.4.8) 

This condition is only an approximation in fluids, and the = should really be 
replaced by =. The more correct statement would be that C z,c, is not zero but 
that its absolute value is small compared with the maximum (absolute) value of 
z,c,. Equation (3.4.8) states that there is no  local accumulation of charge, which 
corresponds to V *  i = 0. This is the assumption employed in current theory at  
low frequencies. 

Electroneutrality or the absence of charge separation holds closely in 
aqueous electrochemical solutions, although not necessarily organic solutions, 
everywhere except in thin regions near charged boundaries. These regions are 
termed double layers or Debye sheaths and have thicknesses on the order of 1 to 
1 0 n m .  The double layer is important when we consider very small charged 
particle interactions and charged surface phenomena, but is generally unim- 
portant with respect to bulk flow characteristics. Clearly, when the solution is 
electrically neutral, the electrical body force is identically zero and the momen- 
tum and energy equations will be unaltered. In addition, the convective contri- 
bution Fu C z,c, to the current density in Eq. (3.4.4) vanishes. However, even in 
this case it is only when there are no  concentration gradients that the current 
density reduces to Ohm’s law. 

From Poisson’s equation it would appear that electroneutrality implies that 
the potential distribution is governed by Laplace’s equation. For exact elec- 
troneutrality this is true, which seems to be inconsistent with Eq. (3.4.4), for on 
using V. i = 0 (current continuity or conservation of charge) we get 

for the governing potential distribution. For constant properties this equation 
says that V2+ = 0 only when C z,D,V2cI = 0. The resolution of the seeming 
paradox lies in the observation that one cannot use both Poisson’s equation and 
the electroneutrality condition, since this overspecifies the problem. Equation 
(3.4.9) is only an approximation because of the approximation introduced by 
the use of the electroneutrality condition. Poisson’s equation always holds, and 
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in principle one can measure the error in the electroneutrality approximation by 
obtaining the solution of 4 from Eq. (3.4.9), plugging it into Poisson's equation, 
and in turn determining the concentration distribution. 

In practice, the electroneutrality condition will never be applicable very 
close to a boundary where charge separation takes place, even in aqueous 
media. In these thin layers the gradients in the electric field become very large 
and balance the right-hand side of Poisson's equation, which is also large, 
though C z,c, may be very small, because the coefficient F I E  is very large 
( -10 '~  v m mol-'  for water). 

If electroneutrality may be assumed, the fluid mechanical conservation 
equations of mass, momentum, and energy remain unchanged from those 
discussed in the last section for multicomponent systems. If electroneutrality is 
not assumed, the mass conservation equation remains unchanged but the 
Lorentz body force must be added to the right-hand side of the Navier-Stokes 
equation. In addition, to the right-hand side of the energy equation is added the 
corresponding work term pE.E - u. 

As an important special case it is of interest to compare the equations 
governing the concentration distribution in a dilute binary electrolyte with those 
for a neutral binary system. By dilute binary electrolyte is meant an un-ionized 
solvent and dilute fully ionized salt-that is, one composed of one negative 
charged species and one positive charged species that do not enter into any 
reactions in the bulk of the fluid ( R ,  = 0). If  the positive ions are denoted by the 
subscript + and the negative ions by the subscript -, the condition of 
electroneutrality is expressible by 

z + c +  + 2- c- = 0 (3.4.10) 

With u, and v- the number of positive and negative ions produced by the 
dissociation of one molecule of electrolyte, we can introduce the reduced ion 
concentration c defined by 

c, c- 
c = - = -  (3.4.11) 

v, u- 

The above relation automatically satisfies the electroneutrality condition. 

and no reactions, and the expression for mass flux Eq. (3.4.2), we have 
From species conservation (Eq. 3.3.4), assuming an incompressible fluid 

(3.4.12) 
d C  
- + U.VC = z,u,FV* ( c V ~ )  + D,V2c 
d t  

where the mobility and diffusion coefficients have been assumed constant. 
Subtracting the equation for the negative ions from that for the positive ions 
gives 

( z ,  u, - z _ u _ ) F V .  (cV4) + ( D ,  - D_)V2C = 0 (3.4.13) 

This relation may be used to eliminate the potential from either the positive ion 
or  negative ion convective diffusive equation (Eq. 3.4.12) to give 



d c  
- + U - V C  DV'C 
a t  
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(3.4.14) 

Here, D is an effective diffusion coefficient defined by 

z + u + D -  - z - u _ D +  
z+u+  - z _ u _  

D =  

or  equivalently, since D+ = RTu,, 

1 - z + l z -  
1 - z + D + / z -  D - 

D = D +  

(3.4.154 

(3.4.15b) 

where we note that for D, = D _  the effective diffusion coefficient D = I>+ = 

D - .  
The interesting result shown by Eq. (3.4.14) is that the concentration 

distribution in a dilute binary electrolyte is governed by the same convective 
diffusion equation as for a neutral species even though there is a current flow. 
The potential distribution is given from Eq. (3.4.13), which is simply an 
expression of current continuity. We can see this from Eq. (3.4.4) for the 
current, which we may write, using z + v+ = - z _  v-, 

(3.4.16) 

But V - i =  0, giving Eq. (3.4.13). 
Note that the concentration distribution for each of the ith species with 

constant diffusion coefficients will also be governed by the convective diffusion 
equation (Eq. 3.4.14) when electromigration (and reactions) can be neglected. 
This will be a good approximation when the electric field is reduced because the 
solution is highly conducting. Hence, the mass transfer is due principally to 
diffusion and convection. Practically, one may achieve this in an electrochemical 
system by increasing the conductivity by adding an indifferent electvoLyte, which 
is present in large excess over the others and which does not react with them 
(Newman 1991, Koryta & Dvorak 1987). 

3.5 Characteristic Parameters 

To this point the equations of change have been set down for pure fluids under 
both isothermal and nonisothermal conditions, and for multicomponent fluids 
and charged species. The boundary and initial conditions have, however, been 
considered only to a limited extent. They will be discussed in the context of the 
specific subject areas: for example, diffusion, chemical reaction, surface tension, 
and heat transfer. Here, the form of the equations of change will be analyzed so 
that some of the more important characteristic similarity parameters can be 
brought o u t  and the stage set for subsequent analyses over restricted ranges of 
these parameters. 
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We shall not examine the equations of change in their most general form 
but will instead limit our attention to dilute or binary solutions in incompress- 
ible flow, without species production. For electrolyte solutions we will restrict 
ourselves to electrically neutral binary solutions or highly conducting solutions 
in which the electric field is small so that the convective diffusion equation for 
neutral species is applicable and the momentum and energy equations are 
unaltered. For simplicity the transport and physical properties are also taken to 
be constant. 

Below are summarized the overall continuity, momentum, convective 
diffusion, and energy equations under the restrictions noted. 

v * u  = 0 (3.5.1) 

" u = - - v p + v v 2 u + g  1 

Dt P 

Dc 
Dt 

DT 
Dt 

= DV2c - 

- aV2T - -  

(3.5.2) 

(3.5.3) 

(3.5.4) 

These equations repeat those previously set down. Here, v is the kinematic 
viscosity, and a is the thermal diffusivity. The subscripts have been dropped in 
the convective diffusion equation, and D can be the binary diffusion coefficient, 
the effective electrolytic diffusion coefficient, or the diffusion coefficient of the 
ith species. The molar concentration is to be interpreted in the same context. In 
the energy equation, sometimes referred to as the heat conduction equation in 
the form written, heat flux due to interdiffusion and due to viscous dissipation 
have been neglected as small. Heat sources are also absent. 

If  the problem is an electrochemical one, there is still an additional 
equation to define the potential distribution given by Eq. (3.4.9). This equation 
will introduce a dimensionless similarity parameter characterizing the potential 
drop. For a characteristic potential drop A 4 ,  one form this parameter takes will 
later be shown to be zFAq5IKT. 

Let us rewrite the system, Eqs. (3.5.1) to (3.5.4), in terms of reduced 
dimensionless variables, recognizing that the choice of characteristic scales is to 
some extent an arbitrary one. With L,  U ,  and T, respectively, the characteristic 
length, characteristic speed, and characteristic time of the problem, and with 
asterisks denoting a reduced dimensionless variable, we have 

In many problems the characteristic time is not independently imposed and is 
given by T = LIU.  

There are several choices for the pressure difference, but for forced 
convection problems where the pressure difference is due mainly to the dynamic 
force, we set 
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where the subscript 0 denotes a convenient reference state, for example, an 
initial or free stream value. Selecting a characteristic driving temperature 
difference (To - T,,,) and a characteristic driving concentration difference 
(co - c,,), we write 

T - T  0 = ( T  o w  - T  ) T > > ;  C - C " = ( C ( ) - C , , , ) C : ~ ~  ( 3  S.7) 

The subscript w may, for example, represent a known value of the temperature 
or concentration at  a wall or surface in the flow. 

In terms of the above reduced variables, Eqs. (3.5.1) to (3.5.4) become 

(3.5.10) 

(3.5.11) 

The equations as nondimensionalized are appropriate only under a suit- 
able assumption of order of magnitude. A term may be, but is not necessarily, 
dominant or  negligible if the coefficient, for example Re-', is correspondingly 
large or small. Such a situation is known to occur in boundary layers where the 
gradients become large. Moreover, the various phenomena have been assumed 
to scale similarly in space and time, and a forced convection flow is implicitly 
assumed in which inertial and viscous forces are important. In buoyancy or 
free-convection flows a different scaling would be required since there is no 
imposed characteristic velocity. Finally, despite the similarity of the equations of 
mass and heat transfer, the solutions may be quite different, depending on the 
boundary and initial conditions. 

Two of the dimensionless parameters appearing in the foregoing equations 
are dynamical in character and do  not relate to molecular transport. They are 

L 
7 U  
L / U  flow time scale 

St = - = Strouhal number 

- - 
T unsteady time scale 

U 2  
nL 

Fr = - = Froude number 
- 
p u ' / L  inertial force - - 

pg gravitational force 

(3.5.12) 

(3.5.13) 
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The Strouhal number is a measure of the unsteadiness of the motion. The 
Froude number is important in free surface flows, for example. The last 
parameter appearing in the dimensionless momentum equation is 

R e =  __ uLp = Reynolds number 
P 

p u 2/ L inertial force 
p u/Ld2 - viscous force 

- - - (3.5.14) 

An alternative interpretation may be ascribed to the Reynolds number, 
consistent with our earlier analogy of the similarity of momentum, heat, and 
mass transport. We may then interpret the dimensionless parameters appearing 
in the energy and diffusion equations in an analogous manner; that is, 

U L  
Re = ~ = Reynolds number 

U 

- p U 2 I L  - 
p U / L 2  

U L  

pc, U(T,  - Tu,)  / L  
k ( T ,  - T,o) ILL  

U L  
I )  D 

U ( c ,  - c,,,) / L  
D ( c ,  - c , , , ) /L2  

momentum transported by convection 
momentum transported by viscous diffusion 

- - 

(3.5.15) 

Pe = ~ = Peclet number (thermal) 
I f f  

heat transported by convection 
heat transported by conduction 

- - (3.5.16) - - 

Pe = __ = Peclet number (diffusion) 

mass transported by convection 
mass transported by diffusion 

- - (3.5.17) 

Both ULIa and U L I D  are termed the Peclet number and usually given the 
same symbol. When there is no reason for confusion, we shall do the same; 
otherwise we distinguish between the two by reference to the thermal Peclet 
number o r  the diffusion Peclet number. The Peclet number plays a similar role 
in heat and mass transport as the Reynolds number in momentum transport. 
The thermal and diffusion Peclet numbers may be written somewhat differently 
to bring out their relation to the Reynolds number; in particular, 

- - 

U L  u 
Pe, = - - = Re Pr (3.5.18) 

V N  

U L  u 
Pe, = - - = Re Sc 

U D  
(3.5.19) 

Here, we have introduced two new dimensionless parameters, the Prandtl 
number and the Schmidt number, defined by 

v 
(Y 

Pr = Prandtl number = - (3.5.20) 
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V 
Sc = Schmidt number = - 

D 
( 3  5 2 1 )  

The  importance of writing the parameters this way is that the Prandtl and 
Schmidt numbers are properties of the fluid, whereas the Reynolds number is a 
property of the flow. 

Table 3.5.1 shows the Prandtl numbers for some common fluids, and 
Table 3.5.2 lists Schmidt numbers for dilute mixtures. The values in these tables 
a re  obtained from the data given in Sections 2.2 to 2.4. In some instances these 
data have been interpolated. 

The consequence of a large Schmidt number, common in liquids, is that 
convection dominates over diffusion a t  moderate and even relatively low 
Reynolds numbers (assuming consistent order of magnitude in the terms). In 
gases these effects are of the same order. O n  the other hand, heat transfer in 
low-viscosity liquids by convection and conduction are the same order since the 
Prandtl number is approximately 1. In highly viscous fluids where the Prandtl 
number is large, heat transfer by convection predominates over conduction, 
provided the Reynolds number is not small. The opposite is true for liquid 
metals, where the Prandtl number is very small, so conduction heat transfer is 
dominant. 

Table 3.5.1 
Prandtl Numbers for Some Common Fluids 

Temperature Prandtl Number 

Substance K "C Pr=  via 

Mercury 300 27 2.72 X 

Air 300 27 7.12 X l o - '  
Water 300 27 5.65  
Ethyl alcohol 293 20 1.70 x 10 
Glycerin 293 20 1.16 x 104 

Table 3.5.2 
Schmidt and Lewis Numbers for Dilute Gases and Dilute Solutions 

Temperature Schmidt Number Lewis Number 

Substance K "C Sc= viD Le = a / D  

Oz-Nz 273 0 7.3 x l o - '  1.0 
Dilute gases 293 20 -1 -1 
NaCl aqueous 293 20 7.0 X 10' 1.0 x 10' 
Dilute solutions 293 20 -10' -10' 
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In Table 3.5.2 values are given for a third dimensionless fluid parameter, 
which is the ratio of the Schmidt number to the Prandtl number. This 
parameter, Lewis n u m b e r ,  is defined by 

a! 
Le = Lewis number = - 

D 
(3.5.22) 

The Lewis number appears in double diffusive problems of combined heat and 
mass transfer. From Table 3.5.2 it can be seen that in gases all the transport 
effects are of the same order, but in liquids conduction heat transfer is the 
controlling mechanism on a large scale. 
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Problems 

3.1 Equation (3.2.10) is an expression for the rate of change of entropy 
following a fluid element. By dividing this equation by the temperature T 
and integrating throughout the interior of a closed control surface moving 
with the fluid, show that if  the fluid is completely enclosed inside a 
heat-insulating boundary that the entropy of the entire fluid can only 
increase. 
In the conservation of species equation for a binary system (Eq. 3.3.17), it 
is sometimes assumed that the velocity u is given by the solution to the 
momentum equation for the solvent. Determine a criterion for this as- 
sumption to be valid that is dependent on the solute volume fraction +, the 
ratio of the density of the solvent particle to the density of the solute 
particle, and the ratio of the velocity of the solute species to the velocity of 
the solvent species. Is the condition + < 1 generally a satisfactory basis for 
the validity of the assumption? 
Two infinite plates are held parallel to each other a distance h = 0.02 m 
apart with a dilute singly ionized electrolyte solution contained between 
them that has a uniform species concentration co = 1 mol m-3. The solu- 

3.2 

3.3 
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tion temperature is 300 K. A potential of 2 V is then applied across the gap 
between the plates. 
a. Assuming the electric field between the plates is constant, and consid- 

ering only the positive ions, write the governing differential equation 
for the steady-state concentration distribution in the gap subsequent to 
the application of the electric field. 
Obtain an expression for the steady-state concentration distribution as 
a function of distance across the gap, and evaluate this expression 
using the numerical values given. 

Gas flows steadily and a t  low speed past a semi-infinite flat plate. The fluid 
properties are constant. Far from the plate the gas has a velocity U parallel 
to the plate, a temperature To,  and a species concentration co. The 
temperature of the plate surface T ,  and species concentration there c , ~  are 
constant, and the pressure is everywhere uniform. For what fluid property 
condition is there an analogy between the spatial distribution of tempera- 
ture, concentration, and velocity component parallel to the plate? Is the 
fluid property condition realistic, and what is a statement of the analogy? 

b. 

3.4 



4 Solutions of Uncharged 
Molecules 

4.1 Diffusion and Reaction Kinetics 

In this chapter we consider the transport of mass by convective diffusion in an 
isothermal solution containing one or more uncharged molecular species. The 
system may involve a chemical, physical-chemical, or biological reaction, or it 
may be nonreacting. If it is reacting and the chemical, physical, or biological 
change takes place in the bulk of the fluid the reaction is termed homogeneous. 
If it takes place only in a restricted region, such as at bounding surfaces or phase 
interfaces, it is termed heterogeneous. In homogeneous reactions species are 
produced, the production rates of which enter into the conservation of mass 
equation for a multicomponent flow. O n  the other hand, for a heterogeneous 
reaction the species production enters only in the boundary conditions at the 
reaction surfaces. 

Homogeneous reactions often lead to significant heat release accompanied 
by nonisothermal conditions that require an appropriate heat source term to be 
added to the energy equation. Significant density changes with attendant 
alteration of the flow pattern frequently occur, and the interaction is “strong” in 
the sense described in our introductory remarks to Chapter 1. Here and 
throughout the text, whenever homogeneous reactions are considered, isother- 
mal conditions will be assumed to prevail. However, in problem application 
primary attention will be paid to heterogeneous reactions. In some instances, 
heterogeneous reactions may also be accompanied by significant heat release, 
but again we shall only examine cases where the heat release is sufficiently small 
that the flow remains isothermal. 

A wide range of phenomena are incorporated under the umbrella of 
heterogeneous reactions, which are defined to include any chemical, physico- 
chemical, or biophysicochemical reaction or transformation that takes place at  a 
surface or interface. Examples would be chemically catalyzed reactions at  a solid 
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surface, adsorption and desorption at  solid and liquid surfaces, including 
membranes, dissolution and precipitation of materials from solutions and melts, 
enzyme-substrate reactions at  surfaces, and so on. With electrolyte solutions, 
electrode and electrochemical reactions take place at surfaces, and this will be 
discussed in Chapter 6. 

Heterogeneous reactions involve several steps. The first is the transfer of 
the reacting species to the surface on which the reaction occurs (reaction 
surface). The second step is the heterogeneous reaction itself. This step is often 
composed of a series of substeps that may include diffusion of the reactants 
through the material, adsorption on the surface, chemical reaction, desorption 
of products and diffusion of products out of the material. The third step is the 
transfer of the products away from the reaction surface into the bulk phase. 

The overdll rate is controlled by the rate of the slowest step. This is then 
called the rate determining step or rate limiting step. If the rate limiting step is 
either steps one or three, which involves the introduction or removal of 
reactants, then the reaction is said to be diffusion controlled, with the rate 
governed by the mass transport relations previously set out. On the other hand, 
if step two, involving the chemical, physical, or biological transformation, is the 
slow step, then the rate is determined by the kinetics of the given process. As 
noted, within this step there may in turn be a distinction between diffusion and 
chemical, physical, or biochemical rates. Those cases where the rates of the 
diffusion and reaction steps are comparable are sometimes termed mixed 
heterogeneous reactions. 

For homogeneous reactions the molar rate of production of species i per 
unit volume R ,  is defined by 

(4.1.1) 

where V is the mixture volume and n, = c,V is the number of moles of the 
species i having a concentration c,. In general, the reaction rate is a function of 
temperature, pressure, and concentrations of the substances participating in the 
reaction and may also depend on the concentrations of species such as catalysts 
or inhibitors that may not appear in the overall reaction. 

For heterogeneous reactions the molar rate of species production refers to 
a surface rather than a volume source, and we write 

(4.1.2) 

where A is the reaction surface area and the prime denotes heterogeneous 
reactions. In the discussion of reaction rate fundamentals that follows, we shall 
make reference to homogeneous reactions, although the functional form of the 
reaction rate expressions for heterogeneous reactions is exactly the same, and it 
is only the constants of proportionality and dimensions that change, since 
R,V= R : A  (Levenspiel 1972). 

A simpfe reaction is one in which the reaction rate at  a given temperature 
depends only on the rate of collision of the reacting molecules or, according to 
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the law of mass action, is proportional to the active masses (concentrations) of 
the reacting substances: 

where k is the rate constant and vf the stoichiometric coefficient of the species i. 
The coefficient v, is also called the order of the reaction with respect to the 
species i, and v is called the overall order of the reaction. Most known reactions 
are of first or second order. 

In a reversible reaction the net rate of the reaction R ,  is the difference 
between the forward and reverse reaction rates. At equilibrium there is no net 
rate of reaction, so the forward and reverse reaction rates are equal and 

(4.1.4) 

where k, and k, are the rate constants for the forward and reverse reactions, 
respectively, and K is the thermodynamic equilibrium constant for the reaction. 

A complex reaction is one in which the reaction rates depend on the 
concentrations of the reacting substances and on the concentrations of the final 
o r  intermediate products of the reactions. For complex reactions the overall 
stoichiometry is frequently not known, so the rate cannot be related to the 
stoichiometry. However, the stoichiometric-based rate expression of Eq. (4.1.3) 
is found to be generally applicable to all reactions, although the order of the 
reaction uf with respect to the species i is not necessarily its stoichiometric 
coefficient and need not be integer or positive. 

When the mechanism of the reaction is not known, the species reaction 
rate is often expressed empirically by the power law relation 

R ,  = k c r  (4.1.5) 

The limitations of this form are manifested by integrating the above expression, 
from which it can be seen that for v < 1 the reactant concentration becomes 
negative at  a finite time. The relation is inapplicable beyond the time a t  which 
this occurs (Levenspiel 1972). 

When the rate expression is written in the form of either Eqs. (4.1.3) or 
(4.1.5), the dimensions of the rate constant depend on the order of the reaction; 
for a vth-order homogeneous reaction the dimensions are (mol m-3)1-u s-'. In 
the special case of a first-order homogeneous reaction, the dimensions become 
inverse time. For a zero-order reaction the reaction rate is independent of 
concentration, and the dimensions become mol m-3 s- I. For complex reactions, 
as for example catalytic reactions, there is often no well-defined reaction order 
with respect to the reacting species. 

The rate constant k is not a true constant but is temperature dependent. 
For many reactions the rate constant has been found to be well represented by 
the Arrhenius law (Levenspiel 1972) 
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k = A exp( - E) E 
(4.1.6) 

where E is the activation energy and A is the frequency factor, a constant for a 
given reaction with the same dimensions as k. The logarithm of k varies as T - ‘ ;  
a plot of In k versus T-’ is called an Arrhenius plot, and a T-’  scale is called an 
Arrhenius scale. 

According to Eq. (4.1.6), the reaction rate is a function of the activation 
energy E .  For homogeneous gas phase chemical reactions the activation energy 
is normally rather high, around 80 to 250 kJmol-’. O n  the other hand, the 
activation energy for diffusion is low, ranging from 4 kJ mol-’ at  room tem- 
perature to about 17 kJ mol-’ at  1300 K. Transformations with low activation 
energies are only moderately accelerated by increases in temperature, but the 
increase for those with relatively high activation energies can be dramatic. For 
example, a doubling of reaction rate for a 10” increase in temperature at around 
ambient conditions is typical for many common homogeneous gas phase 
reactions. Activation energies for enzyme-catalyzed reactions are high, typically 
around 170 to 300 kJ mol-’, but the temperature range of these reactions is 
limited to the usual biological range. In general, uncatalyzed heterogeneous 
reactions have low to moderate activation energies, with values generally from 
25 to 40 kJ mol- ’. 

For heterogeneous reactions all of the expressions given above are written 
in the same form except that the rate constant refers to a reaction surface (Eq. 
4.1.2). With a prime denoting a heterogeneous, condition, the empirical rate 
expression Eq. (4.1.5) is written 

(4.1.7) 

where the subscript zu is used to indicate surface (wall) conditions. Note that the 
units of R:  are niol m-’s - ’  and of k ‘ ,  mol’-” m3’’-2 s-’, so for v = 1 the rate 
constant has the dimensions of a “reaction velocity.” 

In heterogeneous reactions a t  a solid surface, molecules adsorbed on the 
surface often play a fundamental role in the reaction mechanism. For a 
homogeneous surface where only a monolayer of adsorbed material is formed, 
the surface adsorption is often described by the Langmuiv adsorption isotherm. 
For adsorption of a single substance from solution, the isotherm expresses a 
relation between the amount of substance adsorbed and the concentration c of 
the adsorbing species in solution next to the surface 

(4.1.8) 

In this expression 8 is the fraction of surface adsorption sites occupied, and b is 
a constant for the adsorbent. 

The reaction rate for adsorbed molecules is proportional to 6, and for 
niolecules reacting by direct collision the rate is proportional to c. As an 
example of the application of the Langmuir isotherm to heterogeneous kinetics, 
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consider a unimolecular reaction in the adsorbed state where the rate of reaction 
is proportional to the degree of coverage (Frank-Kamenetskii 1969):  

A + B  (4.1.9) 

If adsorption is rapid, as in the case of physical adsorption due to intermolecular 
forces, and the surface reaction is slow, then with the extent of coverage given 
by the Langmuir isotherm the reaction rate is 

(4.1.10) 

where k i  is the rate constant of the surface reaction in appropriate units. Thus 
at  low concentrations of the adsorbing species the reaction is of first order in c 
whereas at  high concentrations it is of zero order. Therefore, depending on the 
concentration, the effective order of the reaction is generally not integer and will 
lie between 0 and 1. 

The opposite situation of slow adsorption more frequently prevails in 
heterogeneous catalysis, where chemically adsorbed molecules undergo reaction 
on the surface. The rate of the process is determined by the chemical adsorption 
or  chemisorption, where the adsorbed molecules react chemically with the 
surface. Since chemical bonds are broken, an activation energy is required and 
the adsorption is relatively slow. Because of the activation energy requirement, 
chemisorption is also often called activated adsorption. For our unimolecular 
example the reaction rate is equal to the chemical adsorption rate or 

C 
R‘ = kLc( 1 - $) = k@ - 

c + b  
(4.1.11 ) 

where ki is the rate constant for chemisorption in appropriate units and 1 - H is 
the fraction of vacant sites on the surface. Simple enzyme-catalyzed chemical 
reactions have the same general type of kinetic behavior. In the context of 
enzyme catalysis the reactant is termed the substrate, the rate law is called the 
Michaelis-Menten law, and the constant b is the Michaelis constant (Castellan 
1983).  

The molar flux to the surface of the ith species if  the species is uncharged 
is given by 

(4.1.12) (i Y ) , ,  = ( c , ~  - D,Vc,),,. 

If the surface is impermeable and any heterogeneous reaction is not accom- 
panied by a local density change, then from the no-slip condition u = 0. If a 
heterogeneous reaction is accompanied by a volume change, there will be a 
general convective flow of the reacting mixture in a direction normal to the 
surface a t  which the reaction is taking place. This convective flux can result in  a 
“strong” fluid interaction and is termed Stefan flow. However, it is generally a 
small effect for most chemical and biochemical heterogeneous reactions and is 
normally important only in the presence of strong ablation or condensation. For 
our  purposes here we shall neglect Stefan flow. 
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If the surface is permeable to the flow as, for example, with a membrane, 
then there is also a finite flux normal to the surface. The extent to which the 
species permeates will depend on the rejection characteristics of the membrane, 
and we shall discuss this boundary condition later in connection with membrane 
filtration. Here, we suppose the surface to be impermeable so that u, = 0, in 
which case at the reaction surface 

(4.1.13) 

where y is the outward normal direction (opposite to Vc,). At steady state the 
incoming flux at  the wall must be balanced by the species reaction rate. 
Employing for simplicity the empirical rate law, Eq. (4.1.7), we obtain 

(4.1.14) 

where the subscript i is here understood. 

variables 
Let us nondimensionalize the above boundary condition using the reduced 

(4.1.15) 

where cu is the free stream or bulk value of the concentration far from the 
surface and L is a characteristic length. In terms of these reduced variables and 
with D and k '  constant, Eq. (4.1.14) takes the form 

(4.1.16) 

The dimensionless similarity parameter Da is a measure of the reaction velocity 
and is termed the Damkiihler number, where 

k'cf;-' 
Dl L 

Da = - = Damkiihler number 

- reaction velocity 
diffusion velocity 

- (4.1.17) 

If Da >> 1, this implies the rate of species production by reaction is large 
compared to the rate of mass transfer by diffusion, and the boundary condition 
at  the reaction surface becomes 

c,, = 0 (4.1.18) 

The meaning of this condition is that all particles approaching the surface react 
instantaneously. Since the solute species flux to the surface is proportional to the 
characteristic driving concentration difference co - c,, then, with c, = 0, the 
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driving force is a maximum and the flux so obtained is termed a limiting flux. 
We shall run into this concept of a limiting flux in many diffusion-controlled 
problems. 

In the opposite limit where Da < 1, the rate of species production by 
reaction is small compared with the diffusional flux, and the boundary con- 
dition at  the reaction surface reduces to 

(g) IU = o  (4.1.19) 

In this limit the concentration is everywhere constant and equal to co, with the 
overall reaction rate specified by k‘cf;. 

When the removal of the reaction products from the surface is the slowest 
step, the conditions described above must be modified (Levich 1962). The 
concentration far from the surface is small compared with that a t  the surface, 
and the direction of the diffusion flux is reversed from that given by Eq. 
(4.1.14). Moreover, under some conditions a steady solution for slow product 
removal may not be achievable as, for example, with an autocatalytic reaction 
where the product catalyzes the reaction, causing the process to accelerate. 

4.2 Convective Diffusion Layer Characteristics 

We have already observed that for dilute solutions the Schmidt number is very 
large, as a consequence of which the diffusion Peclet number 

Pe, = Re Sc (4.2.1 ) 

is generally large. This is true even at moderate Reynolds numbers, the 
consequence of which is that in the bulk of a convective flow past a solid surface 
convection dominates over diffusion. 

In the limit Pe,-+m, 

DC - = o  
Dt 

(4.2.2) 

indicating c = constant following a fluid particle. With c = co in the free stream, 
this solution cannot satisfy the boundary conditions a t  a reaction surface 
discussed in the last section, for example, c,,, = 0. Evidently, near the surface 
there must be a thin diffusion boundary layer of thickness 6, within which the 
concentration changes rapidly. Within this layer the derivatives of the con- 
centration in the direction normal to the surface ( y direction) are much larger 
(of order 6;’) than the derivatives in the streamwise direction ( x  direction). The 
reasoning parallels the Prandtl boundary layer argument for viscous flow past a 
solid boundary at  high Reynolds number. 

We recall that an estimate of the characteristic Prandtl viscous boundary 
layer thickness 6, for steady unbounded flow is given by 
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(4.2.3) 

Since D plays the same role as the kinematic viscosity v, we may expect for large 
Schmidt numbers (v + D )  that the viscous boundary layer thickness should be 
considerably larger than the diffusion boundary layer thickness. A consequence 
of this is that the velocity seen by the concentration layer at its “edge” is not the 
free stream velocity U but something much less, which is more characteristic of 
the velocity close to the wall (Fig. 4.2.1). We note also that since c is understood 
to be c,, then in a multicomponent solution there may be as many distinct 
boundary layers as there are species, with the thickness of each defined by the 
appropriate diffusion coefficient. With this caveat in mind, we may write the 
convective diffusion equation for a two-dimensional diffusion boundary layer 
and estimate the diffusion layer thickness. 

Since the derivatives normal to the surface are order S i1 larger than those 
in the streamwise direction, 

d 2 c  d 2 c  

dy’*axZ 

and the convective diffusion equation becomes 

dc  d c  d c  d 2c 
d t  d x  d y  d y  
- + U - + V - = D ~  

(4.2.4) 

(4.2.5) 

The equation as written is valid for two-dimensional, unsteady diffusion 
boundary layers. The basic features of this result and those that follow are 
unaltered if the diffusion coefficient is not constant or if the flow is generalized 
to axial symmetry or three dimensions, although some details will differ. 

We now estimate the diffusion layer thickness, employing the fact that 
from viscous boundary layer analysis, u - O(6) with u - O( l), so 

d c  dc  d c  u - - u - - -  
d x  d y  d t  

(4.2.6) 

Figure 4.2.1 Relative thicknesses and profiles in diffusion and viscous boundary layers. 
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where if  the flow is unsteady it is assumed that t - x / u .  The flow may be steady, 
in which case d c l d t  = 0 and we suppose this to be so here. The estimate of Eq. 
(4.2.6) is a statement of the fact that all the convective diffusion terms are of the 
same order. 

For 6, < S u  the velocity profile in the diffusion layer must be that 
corresponding to the viscous layer profile near the wall, which at  small distances 
is linear in y :  

Therefore 

(4.2.7) 

(4.2.8) 

where we have set y - 6, and 6 b / x  - u / U .  Similar viscous boundary layer 
arguments can be used, which show that ~ ( d c l d y )  is of the same order. This 
follows using u y 2 1 6 ~  for the value of u close to an impermeable surface. 

In the above estimate it is supposed that a characteristic driving con- 
centration difference c,, - c ,  can be defined. In this sense there is an implicit 
restriction to no species production by reaction at  the surface or no permeation 
through the surface, so the value of c at the surface can be specified independent 
of the solution. This would include, for example, the limiting flux condition of a 
large rate of species production by reaction compared with the diffusive transfer 
rate, so c, = O .  Another example would be a soluble surface where the 
dissolution process is much more rapid than the removal of the dissolved 
particles so that 

where cSat is the equilibrium concentration of the saturated solution in the liquid 
layer a t  the surface. The other boundary conditions of mixed heterogeneous 
reactions and surface permeation will be discussed in the context of specific 
examples. 

An estimate for 6, is now obtained from the condition that for y >  6, 
diffusion is negligible but becomes comparable with convection at  y - 6,, or 

whence 

to give 

d 2C dC 
D 7 - u -  

dY dX 
(4.2.10) 

(4.2.11) 

(4.2.12) 
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Developing velocity profile L 

w 

This result shows that for Schmidt numbers appropriate to liquid diffusion 
problems, which are of the order of lo3, that the diffusion layer thickness is of 
the order of one tenth that of the viscous layer. However, the diffusion layer 
growth is parabolic in the streamwise distance x like that of the viscous 
boundary layer. Remember that the arguments used with respect to the velocity 
at  the edge of the concentration layer are only appropriate for large Schmidt 
numbers. 

A somewhat different behavior is found for the initial rate of growth of a 
diffusion layer in a flow where inertia is absent, as in the steady fully developed 
flow in a pipe or channel or in a fully developed thin film falling under gravity. 
T o  characterize this functional dependence, we must first define the velocity field 
within which the diffusion layer grows. 

The length for a fully developed Poiseuille velocity profile to develop in a 
channel so that there is no longer an inviscid core may be estimated with 
reference to Fig. 4.2.2. The characteristic time for viscosity to diffuse to the 
center of the channel is of the order of t i2/u, whereas the characteristic time for a 
particle to be convected the distance L ,  to where the viscosity has diffused to 
the channel center is of the order of L,IU. The profile will be fully developed 
and unchanging when these times are of the same order, or 

velocity profile 

L ,  Uh 
h u  
_ _ - -  = Re (4.2.13) 

The coefficient multiplying the Reynolds number for a straight channel is 0.16 
(Schlichting 1979). Therefore, for a Reynolds number based on a channel width 
( 2 h )  of 1000, the Poiseuille profile would develop in about 40 channel widths. 
Again, since u P D for diffusion in dilute solution, we may expect that the 
development length is very much longer for the concentration profile than for 
the velocity profile. 

The concentration profile development in a channel is sketched in Fig. 
4.2.3 for surface dissolution, where c = 0 at the entrance x = 0 and along the 
centerline y = h, and where at  the wall c = c,~ ,  corresponding to saturation 
concentration. The profile development for a reacting surface with c, ;= 0 would 
be similar to that for the velocity profile shown in Fig. 4.2.2 except that the 
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c =  0 C.4 

Fully developed 
I Concentration profile 

Developing concentration profile I 

LO 

Figure 4.2.3 
walls. 

Development of solute concentration profile in a channel with soluble 

centerline concentration would remain constant at the entrance value, say c". 
Note that the developed concentration profile, unlike the velocity profile, will 
alter as long as solute is being redistributed. 

For fully developed channel flow u = 0 and u = u(  y), where 

and 

3 h2 d p  urnax = - u = - - - 
2 2/1. dx  

(4.2.14) 

(4.2.15) 

For a pipe of circular cross section the velocity profile is the same as that given 
by Eq. (4.2.14). However, the maximum velocity at  the centerline ti,,, equals 
twice the mean velocity U ,  so the value of the maximum velocity is four thirds 
that of Eq. (4.2.15). In either case, the velocity distribution close to the wall is 

(4.2.16) 

Based on our estimates of the velocity and concentration profile develop- 
ment lengths, it is assumed that the velocity profile is fully developed and the 
developing diffusion boundary layer thickness S, is small in comparison with 
the channel half-width. We then estimate the diffusion layer thickness by 
inserting the linear velocity profile given above into Eq. (4.2.10): 

from which 

D ' I 3  
2 1 3  

X 

(4.2.17) 

(4.2.18) 
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The diffusion layer thickness is seen to grow as the cube root of the streamwise 
distance rather than the square root, as in unbounded flow past a surface. 
Moreover, the growth is independent of the kinematic viscosity and therefore of 
the Schmidt number, although it does depend on viscosity through ufnax. Both of 
these conditions result from the inertia free character of the channel flow itself; 
that is, viscous forces predominate, and the mass density p does not enter the 
problem. 

An estimate of the development length is provided by setting 6, = h and 
x = L,  in the above expression to give 

L ,  U h  
h D  

= Pe --- (4.2.19) 

where we have used the fact that N,,, - U.  As may have been expected, this 
result parallels that for the velocity profile development length with Re replaced 
by Pe. 

For both of the flow types considered, we may also estimate the species 
flux from the relation j'i = D ( d c / d y )  as 

(4.2.20) 

assuming a linear concentration profile in c with c = c , ~  a t  y = 0 and c = co at  
y = 6,. The use of a linear approximation for the concentration gradient is 
referred to as the Nernst layer approximation, although 6 ,  is not necessarily a 
constant as is sometimes assumed with the use of the Nernst film theory. Here, 
6, varies with both fluid properties and streamwise distance in accord with the 
behaviors derived. 

Everything we have said concerning diffusion layer growth at  high Schmidt 
number has a direct analogue with thermal layer growth at  high Prandtl 
number. For the thermal problem the whole of the temperature field is confined 
within that portion of the velocity field where the velocity is linear in distance 
from the wall. The appropriate Peclet number is the thermal one Uhla in place 
of U h i D .  In the following sections, keep this analogue in mind. Thus when we 
speak of a uniform concentration at  the surface, the analogue is uniform surface 
temperature, whereas the analogue of constant surface mass transfer is constant 
heat flux. For the interested reader the thermal boundary layer and thermal 
entry regiolt problems are examined in Schlichting (1979) and Kays & Craw- 
ford (1980). 

4.3 Channel Flow with Soluble or Rapidly Reacting Walls 

In the last section an order-of-magnitude estimate was given for the thickness of 
a high Schmidt number, developing diffusion layer in a channel with a fully 
developed velocity profile. Here, we will illustrate the similarity character of the 
developing diffusion layer close to the entrance and derive the mathematical 
solution for soluble channel walls. In this case the solute concentration at the 
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wall is the saturated solution concentration (c, = c,,,) with the concentration 
vanishing at  the channel center (c = 0). The solution to this problem is 
complementary to the one for the reacting wall in the fast reaction limit where 
c,, = 0, and the concentration at the channel center is the bulk or free stream 
value co. 

For specificity let us first consider the soluble wall problem sketched in Fig. 
4.2.3. Now in a channel (or pipe) flow u = 0, and near the surface the 
streamwise velocity component is given by um,,(2ylh). This behavior of the 
velocity profile is the same as for a “fully developed” thin liquid film on a 
vertical wall, falling under gravity with a free surface at  atmospheric pressure. 
The velocity profile is parabolic with the fall velocity and has a maximum at the 
free surface equal to 

(4.3.1) 

The film thickness S is given by ( 3 ~ Q l g ) ” ~ ,  where 6 is the volume flow rate per 
unit width. As in plane channel flow the mean velocity is two thirds of the 
maximum value. 

From the diffusion equation for steady flow and the velocity profile near 
the wall, 

(4.3.2) 

with the lateral convection associated with the surface mass transfer taken to be 
negligible. The soluble wall boundary conditions are 

c = cSat at y = 0 (4.3.3 a) 

c = o  as y + m  (4.3.3 b) 

Note that conditions close to the entrance have been assumed, with y l h  G 1. 
This implies that not only is the velocity profile approximated by the profile 
near the wall, but the boundary condition on the concentration profile of c = 0 
a t  y = h is replaced by the asymptotic one of c = 0 as y - +  m. 

From physical reasoning, as well as by examination of the differential 
equation and boundary conditions, it is clear that if c,,, is doubled the only 
effect on the concentration distribution would be to double the local value of 
the concentration at  each value of y.  Therefore from Eq. (4.3.2), 

(4.3.4) 

Since the left side of this equation is dimensionless, the right side must also be a 
function of a dimensionless quantity. The only nondimensional combination 
possible is the similarity variable 
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(4.3.5) 

where the numerical factor of 2 has been introduced for convenience. 

whence 
The solution for c'> must therefore have the similarity form c"  = fcn(v), 

(4.3.6a) 

(4.3.6 b) 

(4.3.6~) 

Substituting these relations into the diffusion equation reduces this partial 
differential equation to the ordinary differential equation 

with the boundary conditions 

The ordinary differential equation can also be written 

Integrating twice gives 

(4.3.7) 

( 4.3.8 a) 

(4.3.8 b) 

(4.3.9) 

(4.3.10) 

which, on evaluating the constants of integration, gives 

(4.3.11) 

The complete gamma function is defined by the definite integral 

zn-'e-' dz ( n  > 0) (4.3.12) 
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with the function satisfying the recursion relation 

where 

(4.3.14) 

The integration constant defined by the integral in the denominator of the 
solution is thus (9)”3r($), the value of which is 1.858. It follows that 

(4.3.1 5) 

The diffusion flux from the channel wall is 

or, from the above solution for c, 

1 1 3  

j ; ’ =  0.678cSatD( ”) hDx (4.3.17) 

Using this result and the Nernst relation j : ’ .  = D(co - c,)/6,, we estimate the 
diffusion layer thickness to be 

(4.3.1 8)  

This procedure for estimating the diffusion layer thickness was employed by 
Levich (1962),  but recall that any definition of a “boundary layer thickness” is 
to some extent arbitrary. All of the results derived are seen to be consistent with 
the order-of-magnitude estimates given in the previous section. 

In concluding this section, we point out that the solution for the con- 
centration profile in the case of a rapidly reacting wall, where c, = 0 and c = co 
a t  the channel center, is simply the complement of the solution given by Eq. 
(4.3.15): 

(4.3.19) 

The quantity CIC, represents the concentration defect in the soluble wall 
problem. All other results are unchanged except that c,,, is replaced by co and 
the diffusional flux is toward the wall. 
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4.4 Reverse Osmosis and Mixed Heterogeneous Reactions 

Reverse osmosis is a pressure-driven membrane process used to separate rela- 
tively pure solvents, most often water, from solutions containing salts and 
dissolved organic molecules. Under the action of a hydrostatic pressure, typical- 
ly in the range of 3 to 7 MPa, applied across the membrane separating the feed 
from the relatively pure solvent, the solvent passes through the membrane and 
the dissolved materials remain behind. 

Most reverse osmosis systems in use today employ semipermeable asym- 
metric membranes made from cellulose acetate or polyamide, or composite 
membranes made with a dense, thin, polymer coating on a polysulfone support 
film. The asymmetric cellulose acetate membrane is a high-water-content gel 
structure consisting of a thin rejecting “skin” about 0.1 to 0.5 p m  thick integral 
with a much thicker porous substrate 5 0  to 100 p m  thick. The skin offers the 
main hydraulic resistance to the flow. The porous substructure gives the 
membrane strength but offers almost no hydraulic resistance. The dense reject- 
ing skin of the composite membranes can be up to 10 times thinner than the 
skin of the cellulose acetate membranes. 

The rejection of the dissolved materials is not complete, the incompleteness 
depending not only on the size of the rejected species but also on the chemistry 
of the membrane and the rejected species. With the use of the correct membrane 
the rejections, measured in percent, of inorganic salts will be in the high nineties, 
and there is almost complete rejection of most species with molecular weights 
greater than 150. The rejection of low molar mass nonelectrolytes, such as small 
organic molecules, is generally low with the asymmetric cellulose acetate and 
polyamide membranes. However, with the use of newer composite membranes 
and by proper p H  adjustment, moderate to good rejections can be obtained with 
many intermediate and even low molar mass organics. Because the percent 
rejections tend to be constant over a wide range of concentration, the con- 
centration in the solvent passing through the membrane will be proportional to 
the concentration retained. The higher the fraction of feed that passes through 
the membrane, that is, the higher the “recovery” of solvent, the higher will be 
the concentration in the product. The retained solvent, usually water, is often 
termed the concentrate, and the product is the permeate. 

I f  an ideal semipermeable membrane separates an aqueous organic or 
inorganic solution from pure water, the tendency to equalize concentrations 
would result in the flow of the pure water through the membrane to the 
solution. The pressure needed to stop the flow is called the osmotic pressure. If 
the pressure on the solution is increased beyond the osmotic pressure, then the 
flow would be reversed and the fresh water would pass from the solution 
through the membrane, whence the name reverse osmosis. In actual reverse 
osmosis systems the applied pressure must be sufficient to overcome the osmotic 
pressure of the solution and to provide the driving force for adequate flow rates. 

Osmotic pressure is a property of the solution and does not in any way 
depend on the properties of the membrane. For dilute solutions the osmotic 
pressure is independent of the solute species (a colligative property) and is given 
by the van? Hoff equation 
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T = vcRT (4.4.1) 

where T is the osmotic pressure and v is the number of ions formed if  the solute 
dissociates. Table 4.4.1 shows the osmotic pressures for some aqueous solutions 
at  standard temperature as a function of mass concentration. The molar mass is 
expressed in molecular weight units. Evidently at  the same mass concentration 
sugar will have a much lower osmotic pressure than salt because it has a higher 
molar mass. 

The amount of solvent that will pass through a membrane is proportional 
to the excess of the hydrostatic pressure p over the osmotic pressure T ,  and for 
useful flow rates p should be large compared with T.  The solvent (water) flux 
through the membrane may be written approximately as 

12 = A ( A p  - A T )  (4.4.2) 

where A p  is the hydrostatic pressure difference across the membrane and AT is 
the osmotic pressure difference corresponding to the solute concentrations 
immediately adjacent to the membrane surface on both sides. The coefficient A 
is the membrane solvent permeability coefficient. I t  is inversely proportional to 
the thickness of the solute-rejecting portion of the membrane, a quantity that is 
generally not known precisely. The value of A is determined empirically by 
using Eq. (4.4.2). 

Although the solvent flux is inversely proportional to the “active” thick- 
ness of the membrane, the solute rejection is independent of this thickness. The 
driving force for the solute flux is mainly the difference in solute concentration 
across the membrane between the feed and product and is given approximately 
by 

1: = B A G ,  = Bc,R, (4.4.3) 

Table 4.4.1 
Osmotic Pressure Data for Some Aqueous Solutions a t  Standard 

Temperature 

Concentration Osmotic Pressure 
Dissolved Species kg m - 3  MPa 

NaCl (M = 58.5) 

Urea ( M  = 60) 

Sucrose (M = 342) 

50 
10 
5 

50 
10 
5 

50 
10 
5 

4.609 
0.844 
0.421 

2.127 
0.425 
0.213 

0.380 
0.076 
0.038 
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Here, B is the solute permeability coefficient, A c ,  is the difference in solute 
concentrations immediately adjacent to the membrane (wall) on the feed and 
product sides, c,~,  is the concentration on the feed side, and R ,  is the solute 
rejection coefficient, which is usually taken to be constant. 

Combining the preceding two equations and using the fact that the osmotic 
pressure is proportional to the solute concentration, we can show that the 
permeation velocity of the solution through the membrane u, = j / p  may be 
written (Gill et al. 1971) 

(4.4.4) 

where the membrane constant A’  = A / c A ,  where c A  is the molar concentration 
of the solvent. The molar concentration co is the solute concentration in the bulk 
solution far from the membrane, r o / A p  representing the fraction of the osmotic 
pressure drop required to overcome the osmotic pressure of the bulk solution. 
Note that the rejection coefficient R,-+ 1 for A p  + ro. 

As a consequence of the passage of solvent, say water, through the 
membrane, solute is carried to the membrane surface, and the concentration at 
the membrane surface tends to be higher than in the bulk of the liquid. This 
phenomenon is called concentration polarization. Several deleterious effects 
arise from concentration polarization, one of which is the local increase in 
osmotic pressure due to the increased solute concentration at the membrane. 
The result is that the solvent flux is decreased because the effective driving 
pressure is reduced. Another effect is an increase in the solute concentration in 
the product, for with real leaky membranes the flux of solute across the 
membrane is proportional to the difference in solute concentration on both 
sides. The extent of concentration polarization depends on the hydrodynamics 
and geometry of the system, with increased flow speed of the solution past the 
membrane tending to reduce the effect. 

To illustrate the concentration polarization problem, we again consider 
laminar flow in a parallel plate, reverse osmosis channel, where the channel 
walls are a porous support for the membrane and where the velocity profile is 
taken to be fully developed from the channel inlet. Let us first examine the 
qualitative behavior of the solute concentration distribution along the channel 
shown schematically in Fig. 4.4.1. The membranes are assumed to be perfectly 
rejecting ( R ,  = I ) ,  that is, totally impermeable to solute. 

When the feed enters the channel, solute is convected toward the mem- 
branes, as a result of the convective transport through them, while being 
diffused away. Because of the basic longitudinal character of the flow and the 
solute-rejecting property of the membranes, the net result is the streamwise 
development of diffusion boundary layers with enhanced solute concentration 
adjacent to the membranes. These polarization boundary layers at  first grow 
rapidly in the immediate neighborhood of the inlet, with the excess solute 
concentration and thickness increasing as the one-third power of the streamwise 
distance, as was shown in the preceding two sections to be characteristic of 
entry length diffusion layers. Beyond the immediate entrance region the excess 
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Figure 4.4.1 Solute concentration development in a reverse osmosis channel. 

concentration growth becomes more nearly linear with downstream distance 
until the diffusion layers from both membrane walls eventually fill the channel. 
At this location the concentration profile adjusts to an asymptotic fully de- 
veloped and unchanging profile characterized by the convective salt transport 
toward the wall, just balancing the diffusive transport away from it. 

For the fully developed velocity profile the mathematical problem again 
reduces to the solution of the steady form of the convective diffusion equation 
for the solute concentration. In contrast to the diffusion equation treated in the 
channel flow problem with soluble or  rapidly reacting walls, it is necessary to 
include here the lateral convection term to account for the product removal 
through the membrane walls, putting 

dC dC d LC 

d x  d y  dY 
U - + U - - = D ~  (4.4.5) 

Because of the transverse velocity component, the velocity profile is a 
modification of the usual Poiseuille distribution. This problem has been solved 
by Berman (1953),  including the effect of a constant permeation velocity u,, in 
altering the velocity profile in the x direction and in causing a streamwise 
variation in the bulk average velocity. However, when the Reynolds number 
based on the permeation velocity is small, as it generally is, the streamwise 
component has the same form as for an impermeable wall and the transverse 
component is proportional to the constant permeation velocity u,; that is, 

2 

u = u ,  ( & ) ( 3  - $) - huw .=3 1 
U 

(4.4.6a) 

(4.4.6 b) 

Note here that tr is the average longitudinal velocity, which in this instance does 
decrease along the channel from the mean inlet value U because of the solvent 
withdrawal through the membrane. Setting Y = y - h (Fig. 4.4.1), we see that 
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for the developing region ( y 4 h )  the velocity profile description further sim- 
plifies to 

( 4.4.7a) 

Y e 1  (4.4.7b) 
h 

Apart from the symmetry condition at  the channel center, the initial 

u = -u tu 

condition is that a t  the inlet 

c = co at  x = 0 (4.4.8) 

The boundary condition a t  the membrane wall derives from conservation of 
solute flux applied across the membrane. Stated in words: At steady state the 
bulk flow of solute toward the membrane minus the diffusional flux of the 
solute away from the membrane toward the bulk of the fluid must equal the 
solute permeation through the membrane. Mathematically, taking into account 
that the y coordinate is in the direction of the concentration gradient and 
opposite to the permeation velocity, 

-u,c,, - ,!I($) = -(1 - R,)u,c,, 
1 0  

or 

(4.4.9a) 

(4.4.9b) 

In writing the above boundary condition, we have allowed for the 
possibility of a rejection coefficient less than unity, although R ,  is supposed 
constant. With a constant permeation velocity u, the problem is a linear one. 
However, were u,, to depend on the concentration at  the membrane, as 
characterized by, say, Eq. (4.4.4), a nonlinearity would be introduced through 
the boundary condition. Let us assume that R,  is not only constant but equal to 
1, in which case the boundary condition becomes 

K' 
U U , C I U  = (4.4.10) 

Equation (4.4.9b) may be compared with the boundary condition for a 
mixed heterogeneous reaction k'c,;, = D ( d ~ / d y ) , ~ .  I t  is evident that R ,  = 1 
corresponds to a first-order reaction, whereas if R ,  - c::, there is a correspond- 
ence as well for reactions other than first order. For simplicity, let us consider 
the perfectly rejecting case of R ,  = 1. Here, the appropriate dimensionless 
parameter characterizing the boundary condition is the ratio of the permeation 
velocity to the diffusion velocity 

u permeation velocity D a =  2 = 
D / h  diffusion velocity 

(4.4.11) 
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We could refer to this as a Damkohler number, by analogy with Eq. (4.1.17), or 
recognize that it is interpretable as a Peclet number for mass transfer: 

v,h mass transported by permeation 
D mass transported by diffusion 

P e = - =  (4.4,12) 

I t  has been common in the literature to interpret the parameter as a Peclet 
number, and we shall follow that practice. 

What is important to recognize from the discussion is that the boundary 
condition for mass transfer through a semipermeable membrane is directly 
analogous to that for a mixed heterogeneous reaction. A consequence of this is 
that what is said about the one problem can be translated to the other, despite 
the somewhat different physics and chemistry. The example of reverse osmosis 
is therefore used as an illustration of a mixed heterogeneous reaction. The major 
part of the discussion will, however, be confined to the developing layer, where 

(4.4.13) 

In the analogous chemical reaction problem this corresponds to a small Dam- 
kohler number, wherein the rate of species production is small compared with 
the diffusional flux. 

Before presenting a solution for the developing layer problem, let us give 
an order-of-magnitude estimate for the behavior of the solute concentration at 
the wall. From Eq. (4.4.10) we estimate 

(4.4.14) 

Thus, for the relatively small concentration changes characteristic of conditions 
at  the inlet, the normal convection term in the diffusion equation can be 
neglected and the estimate of a,, from Eq. (4.2.18) may be applied to give 

where 

(4.4.15) 

(4.4.16) 

the factor of 3 having been inserted for later convenience. 
The parameter (czu - co)/co is a measure of the extent of concentration 

polarization. A straightforward dimensional analysis of the full diffusion equa- 
tion and boundary conditions would indicate a dependence on the three 
parameters in parentheses in Eq. (4.4.16). However, it can be seen that for the 
developing region this dependence is reduced to only one parameter. Equation 
(4.4.15) suggests the introduction of a new dependent variable that is a measure 
of the concentration defect and defined by 
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where, as before (Eq. 4.3.5), 

From the chain rule 

and the assumed form of c:’ we may write 

and from Eqs. (4.3.6b) and ( 4 . 3 . 6 ~ )  

(4.4.1 7) 

(4.4.18) 

(4.4.19) 

(4.4.20a) 

(4.4.20 b) 

( 4.4 .20~)  

Transforming the derivatives in the convective diffusion equation, with the 
velocity components replaced by the expressions of Eq. (4.4.7), reduces the 
partial differential equation to the ordinary linear differential form 

(4.4.2 1 ) 

under the assumption that 5 1 1 3  -+ 0. With this assumption, which is appropriate 
to the developing layer near the inlet, the normal convection term can be 
neglected. 

The boundary conditions become 

f - 0  a s 7 - W  (4.4.22a) 

(4.4.22b) 

The second condition as written also requires that 3 0. The requirement of 
small 5 has as its analogue the slow reaction rate condition, the limit of which is 
the zero mass transfer statement dc ldy-+  0. 

Except for the last term, the differential equation is the same as that for 
the soluble channel wall problem where the concentration is uniform at the 
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surface. Observing that f =  r ]  is a solution of Eq. (4.4.21) suggests the form 

which on 

This may 

f = w  

substituting in Eq. (4.4.21) gives 

be integrated twice to yield 

(4.4.23) 

(4.4.24) 

(4.4.25) 

where the boundary condition, Eq. (4.4.22a), has been applied. From the 
boundary condition at r ]  = 0 it can be shown that 

The solution for f(7) is therefore 

(4.4.26) 

(4.4.27) 

where f ( 0 )  = 1.536. This result is expressible in terms of an incomplete Gamma 
function, and a graph of f ( r ] )  is shown in Fig. 4.4.2, a curve obtained from the 
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Figure 4.4.2 
(after Solan & Winograd 1969). 

Similarity solution for concentration defect in developing layer near inlet 
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solution o f  a heterogeneous reaction problem dealing with electrodialysis (Solan 
& Minograd 1969). The solute concentration a t  the wall corresponding to the 
solution for f (v)  is 

5 = 1 + 1.536[”3 
co 

(4.4.28) 

This result is valid for 6 i 0.02, as discussed below. 
Dresner (see Sherwood et al. 1965) obtained the approximate analytic 

solution given by Eq. (4.4.28) and one valid further downstream in the 
developing layer. He  expressed his results in terms of a concentration polariza- 
tion parameter r, which measures the excess solute concentration at  the 
membrane relative to a so-called mixing-cup concentvatioiz cjn. This con- 
centration varies along the channel and is defined as the concentration that 
would be measured at  a streamwise location “if the channel were chopped off a t  
that point and the fluid issuing forth were collected in a container and 
thoroughly mixed.” For parallel membranes at  a downsteam station x ,  with a 
constant withdrawal velocity the fraction of solvent removed is (u , , / i i ) (x /h) .  
The fraction of solvent remaining is therefore 1 minus this quantity. Now the 
solute concentration at  the inlet is co, and if  the membranes are completely 
rejecting then, at  a given downstream position, this concentration must be 
increased in proportion to the amount of water removed. Therefore, we may 
express c,,, at a location x along the channel by 

(4.4.29) 

The climensionless polarization parameter denoted by r is then defined as 

(4.4.30) 

The concentration polarization result that Dresner derived for the develop- 
ing region is made up of two segments: 

r= 1.5366”’ 5 9 0.02 (4.4.31) 

r= 6 + 5(1 - e-m) 6 Z- 0.02 (4 .432)  

The formula for small 5 is the same as that given by Eq. (4.4.28). The segment 
for 5 2 0.02 employs the same velocity profile (Eq. 4.4.7) but applies the 
boundary condition u,,c, = - D ( d c / d y ) ,  in a form valid for large 6. 

For the far downstream region Dresner used the more accurate approxim- 
tion to Berman’s velocity profile given by Eq. (4.4.6) and showed that, for 
x > L,, in the developed region, 

(4.4.33) 
v h  
D 

r -’I + Pe2 for Pe = 5 P 1 
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Closed-form expressions that are applicable over the entire range of Pe have 
been derived by Gill et al. (1971). 

Finite difference solutions of the full diffusion equation using the more 
accurate velocity profile of Berman and the boundary condition u,c,, = - D ( d c /  
dy),, were obtained by Sherwood et al. (1965). The results are shown in Fig. 
4.4.3, where the comparison is seen to be excellent. The curve labeled “Analytic 
(developing)” is made up from overlapping the large and small 5 formulas given 
above. 

The downstream extent of the developing region is characterized approxi- 
mately by the intersection of the solid and dashed curves in Fig. 4.4.3. From 
equating Eqs. (4.4.32) and (4.4.33) for large 5, we obtain 

(4.4.34) 

The quantity (v,,,ltr)(L,/h) is just the fraction of solvent removed over the 
length L,. On the other hand, for 5 - 0(1), from the definition of 5 (Eq.  
4.4.16), we have 

(4.4.35) 

This result is obtained by neglecting the effect of streamwise convection so that 
the thickness 6, follows from a balance of the transverse convective solute flux 

r 

1 0 2  

- Analytic (developing) 
Analytic (developed) 

10 

1 

I I I I I I I  

1 0 - 3  10-2 lo-’ 1 10 1 0 2  

5 
Figure 4.4.3 Concentration polarization in a parallel membrane reverse osmosis chan- 
nel with fully developed laminar flow and complete solute rejection (after Sherwood et al. 
1965). 
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toward the membrane against the diffusive flux away from it, or D16, - u,,,. 
The development length is then given by the product of the characteristic time 
for the solute to diffuse from the wall to the edge of the diffusion layer Sh/D 
and the average streamwise velocity in the layer, i8,lh. Substitution of D/u,, for 
6, gives Eq. (4.4.35). 

4.5 Flow Past a Reacting Flat Plate 

High Reynolds number boundary layer flow past a reacting flat plate has been 
examined at some length by Levich (1962). We looked a t  it in Section 4.2, using 
order-of-magnitude arguments. Because much of the physics and many of the 
general features do not differ from those for channel flows, we shall not discuss 
this problem in great detail. Instead, we will concentrate on general similarity 
criteria and behavior that can be deduced from the well-known Blasius solution 
for flow past a nonreacting flat plate. Moreover, mixed heterogeneous reactions 
will not be considered, and the discussion will be limited to those cases where 
the concentration a t  the wall is uniform. See Levich (1962) for more detail. 

For high Reynolds number boundary layer flow past a flat plate with 
gravitational forces absent, the equation governing the streamwise velocity 
component u for constant viscosity is 

The corresponding convective diffusion equation is 

Dc d 2C _ -  
D C D l i j 7 2  

(4.5.1) 

(4.5.2) 

Although for simplicity of presentation we again focus on a single solute species, 
this is not a necessary requirement, since for a dilute system Eq. (4.5.2) could be 
written for each species. 

The dependent variables are now reduced by using the scalings 

M u ii = - 
U 

c - c,,, 

co - C," 

(4.5.3 a) 

(4.5.3 b) 

Here, U is the velocity a t  the edge of the viscous boundary layer, co is the solute 
concentration a t  the edge of the diffusion boundary layer, and c , ~ .  is the 
Concentration at  the wall. In terms of ~4 ' ' .  and c "  Eqs. (4.5.1) and (4.5.2) are 
unchanged, but the boundary conditions become 

;:. = ___ 

1 c ' i =  1 as y + m  (4.5.4a) 

I I  :t = 0 :i = 0 at y = O  (4.5.4b) 
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In  the special case when v = D (Sc = I ) ,  a condition appropriate to dilute 
gases, the equations and boundary conditions are identical and the system 
admits the particular integral 

c :> = u 'i (4.5.5) 

or  

This general result is usually presented in a more restricted sense as an 
analogy between skin friction and mass transfer. In particular, a skin friction 
coefficient may be defined as 

and a mass transfer coefficient as 

and u = D it follows that With ::. = :t 

(4.5.7) 

(4.5.8) 

(4.5.9) 

This relation between mass and momentum transfer is termed Reynolds anal- 
ogy, although the terminology more frequently is used to denote a correspond- 
ence between heat and momentum transfer. It is evident that the same argument 
used above could have been applied to heat transfer for a constant wall 
temperature, and with v = a a relation identical to Eq. (4.5.9) could be obtained 
with a dimensionless heat transfer coefficient in place of the mass transfer 
coefficient. 

Of much greater interest is the case where Sc= v l D  + 1, since our 
principal concern is with dilute solutions. For this situation the diffusion 
boundary layer is imbedded in the viscous boundary layer, and the velocity it 
sees is that close to the wall. Solution to the steady, Blasius, flat plate, viscous 
boundary layer equation shows the velocity components close to the wall 
( y 4 6,) to be expressible in the series form 

774 + 0 ( s 7 ) ~  [ 12 
0.028 

u = U 0.3327 - - 

1 / 2  

u = (5) [ 0.083772 + O ( 4  
X 

(4.5.1 Oa) 

(4.5.10b) 

where the similarity coordinate 7 is defined by 
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l i 2  

r l =  Y ( $ )  (4.5.1 1) 

Provided the mass transfer rate is small so that the velocity profile is 
unaltered by diffusion, the interaction is weak and the series expressions for the 
velocity components can be applied in the convective diffusion equation. It is 
just this situation with which we have concerned ourselves to this point. A 
criterion for the weak interaction is that uG,/D * 1, which can be shown to 
translate to Sc2I3 > 1, a criterion satisfied for the case examined. 

Replacing the velocity components in the boundary layer momentum and 
diffusion equations by the series expansions valid near the wall reduces these 
equations to the linear forms 

(4.5.12) 

(4.5.13) 

To consistent order, Eq. (4.5.12) is, by definition, satisfied identically by the 
series solution of Eq. (4.5.10). This may be verified by substitution. If the y 
coordinate in Eq. (4.5.13) is transformed following 

113 

i = Y ( ; )  (4.5.14) 

the diffusion equation 
and the system is seen 

reduces identically in form to the momentum equation 
to admit the particular integral 

Cit (X ,  5 )  = Uit(X, y) (4.5.15) 

The boundary conditions are satisfied by the integral in both the original and 
the transformed coordinates. 

Using the definitions of the skin friction and mass transfer coefficients, 
Eqs. (4.5.7) and (4.5.8), and the fact that d c : " / d c  = d u ' F / d y ,  we find 

(4.5.16) 

This generalization of the Reynolds analogy is termed the C%ilton-Colburn 
analogy. Although derived for large Schmidt numbers, it is found to be quite 
accurate down to Schmidt numbers of 0.5, far below where it might be expected 
to apply (Bird et al. 1960). Again observe that the argument as outlined could 
also have been applied to heat and momentum transfer, with c and D replaced 
by T and a, respectively. The resulting formula would be the same as that 
above, but the Schmidt number is replaced by the Prandtl number, and the 
dimensionless diffusion coefficient is replaced by a dimensionless heat transfer 
coefficient. 
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The diffusion layer thickness can be estimated from the Nernst relation 

where, from the Chilton-Colburn analogy, 

The Blasius flat plate solution gives the well-known result 

0.664 c, = 1/2 
Re* 

for the skin friction coefficient, where Re, = Ux/u. 
Combining the last three relations, we get 

(4.5.17) 

(4.5.18) 

(4.5.1 9)  

(4.5.20) 

We also recall that the “boundary layer thickness” for the flat plate viscous layer 
is 

Thus, 

0.6 
8, = - sc l13  6, 

(4.5.21) 

(4.5.22) 

confirming the earlier order-of-magnitude estimate. 
Finally, we note that the concentration profile will be self-similar like the 

Blasius, flat plate velocity profile, that is, a function only of the stretched normal 
coordinate 

z = ip) l i Z  (4.5.23) 

We can obtain the concentration profiles simply by rescaling the velocity 
profiles, using Eqs. (4.5.14) and (4.5.15); therefore we do  not explicitly discuss 
the similarity solution of the boundary layer diffusion equation. However, in 
terms of the similarity variable given above and from the series expressions for 
the velocity profile near the wall, the equation is reducible to the linear form 

(4.5.24) 

which is the same type as that in channel flow with soluble or rapidly reacting 
walls. 
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4.6 Taylor Dispersion in a Capillary Tube 

In this section we consider what happens when two miscible liquids are 
contacted and mixed in a flow. The equilibrium for such a case is simply that of 
one phase uniformly distributed throughout the second, so any phenomena of 
interest are unsteady ones. The process whereby one phase is distributed in the 
second is termed miscible dispersion. In a laminar flow both convection and 
molecular diffusion will contribute to this dispersion. Other factors can also 
enter, including the geometry and any forced unsteadiness. 

G.I. Taylor (1953, 1954) first analyzed the dispersion of one fluid injected 
into a circular capillary tube in which a second fluid was flowing. He showed 
that the dispersion could be characterized by an unsteady diffusion process with 
an “effective” diffusion coefficient, termed a dispersiorr coefficient, which is not 
a physical constant but depends on the flow and its properties. The value of the 
dispersion coefficient is proportional to the ratio of the axial convection to the 
radial molecular diffusion; that is, it is a measure of the rate a t  which material 
will spread out axially in the system. Because of Taylor’s contribution to the 
understanding of the process of miscible dispersion, we shall, as is often done, 
refer to it as Taylor dispersion. 

We illustrate the mechanisms of Taylor dispersion by considering what 
happens to a slug of solute A injected at  time zero into a fully developed laminar 
flow of a solvent B as shown in Fig. 4.6.1 (Nunge & Gill 1969). At very short 
times after injection, except a t  high flow rates, the dispersion of A into B takes 
place by pure axial molecular diffusion because of the high axial concentration 
gradients. The dispersion thus takes place as if the two phases were stagnant. 
The time over which this type of dispersion occurs is usually very short and not 
of practical interest. 

The characteristic diffusion length (Dt)”’ is proportional to the square 
root of time, and the characteristic convection length U t  is linear in time. I t  
follows that for times slightly greater than considered above, axial convection 

Figure 4.6.1 
developed laminar flow of a solvent B (after Nunge & Gill 1969). 

Schematic as a function of time of dispersion of a solute slug A in a fully 
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enters in a significant way into the dispersion process. Indeed, at  sufficiently 
high flow rates axial convection will be the controlling mechanism, and the 
solute slug will be distorted into a parabolic shape by the parabolic velocity 
field, as shown in Fig. 4.6.1 at  time t , .  Thus convection, or rather the velocity 
variation across the cross section, enlarges the axial region where A is present 
and hence contributes to enhancing the axial dispersion or spreading of the 
region occupied by A. But it is clear that axial convection establishes large radial 
concentration gradients. As a result, at slightly higher times t ,  radial molecular 
diffusion contributes to the dispersion process, as illustrated in Fig. 4.6.1. The 
radial molecular diffusion acting at  the front end of the slug moves A from the 
high-velocity central regions of the tube, where it is present, to the low-velocity 
wall region, thereby slowing the front end down. At the rear end of the slug, 
molecular diffusion moves A from the low-velocity wall region to the higher- 
velocity central regions, thereby speeding up the rear. The net effect of the radial 
diffusion is therefore to compress the mixing zone, which the mechanism of 
axial convection tends to elongate. Contrary to the usual perception of the effect 
of diffusion, in this case the radial molecular diffusion inhibits the axial dis- 
persion of A. The result is that there is a mixed zone of varying concentration. 

As time goes on, the action of radial diffusion continues to inhibit axial 
dispersion by diffusion and convection and makes the mixed zone more 
uniform, as shown at  time t,. Finally, at  still larger times a quasi equilibrium is 
established. Here, convection, radial diffusion, and axial diffusion all contribute 
to the dispersion, with the net effect appearing as if the fluid were in plug flow, 
whereas in fact the velocity is radially distributed. With a further increase in 
time, the effect is only to increase the length of the mixed zone. 

Following Taylor (1953), let us first consider the case of dispersion by 
convection alone, illustrated in Fig. 4.6.1 a t  time t , .  Taylor asked the question, 
what would be the distribution of mean concentration of the solute averaged 
over the cross section of the tube as a function of axial position? To define the 
answer, he first looked a t  the somewhat simpler case of a semi-infinite slug of 
solute with its leading edge located at  x = 0 at time zero, as shown in Fig. 4.6.2. 
This figure shows the solute distributions at  t =  0 and at a later time large 
enough that convection is dominant but not so large that radial diffusion has 
entered the picture. The leading edge of the solute will be distorted into the 
para boloid 

(4.6.1) 

This relation derives from the velocity distribution for fully developed flow in a 
circular tube, Eq. (4.2.14) with u,,, equal to twice the mean velocity U and h 
equal to the tube radius a. Now the mean concentration C at any cross section x 
is simply 

= co(<) (4.6.2) 
area of section of paraboloid 
area of cross section of tube rra 

6 =  G o  

From the last two relations 
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x = o  
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Figure 4.6.2 Dispersion by convection alone of an initially semi-infinite slug of solute: 
(A) solute location along tube; (B)  mean concentration distribution along tube (after 
Taylor 19.53). 

- 
C 

(4 (B) 

Figure 4.6.3 Dispersion by convection alone of an initially finite-width slug of solute: 
(A) solute location along tube; (B) mean concentration distribution along tube (after 
Taylor 1953). 
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c=  C" x < o  

C = c , ( l -  &) O < x < 2 U t  

c=  0 x > 2 U t  

(4.6.3) 

This distribution is shown in Fig. 4.6.2B. 
The slug of solute of finite width A located initially at  time zero at  x = 0 

and the resulting location a t  time t >  A / 2 U  are shown in Fig. 4.6.3A. The 
corresponding mean concentration distributions are shown in Fig. 4.6.3B. The 
solution for the mean concentration distribution can be obtained simply by 
superposing two examples of the preceding case, namely 

c =  C" x < A  and C = O  x > A  (4.6.4a) 

G = - c "  x<O and C = O  x>O (4.6.4 b) 

For t > A i 2 U  the solution is 

C = O  x<O 

A < x < 2 U t  (4.6.5) 

6= 0 x > A + 2 U t  

Having looked at  the effect of the change in concentration resulting from 
convection alone, we next consider somewhat larger times where the radial 
concentration gradients have become large enough that the effect of molecular 
diffusion in the radial direction becomes important, as discussed in connection 
with Fig. 4.6.1 for time t,. It was pointed out by Taylor (1953) that as far back 
as 1911 A. Griffiths had observed that a tracer injected into a stream of water in 
a tube spreads out in a symmetrical manner about a plane in the cross section 
that moves with the mean speed of the flow. That is, a t  some downstream point 
in the flow the tracer concentration would increase from zero to a maximum 
and then decrease to zero again. This is clearly not the result shown in Fig. 
4.6.3B, where if we let A - 0  to correspond to a thin input tracer, there would 
simply be a rectangular concentration spread out over a distance 2 U t .  

As Taylor remarked, Griffiths result is indeed surprising for two reasons. 
First, since the water near the center of the tube moves with twice the mean 
speed of the flow but the tracer moves at the mean speed, this means the water 
near the center must approach the column of tracer, absorb the tracer as it 
passes through the column, and then reject the tracer as it leaves on the other 
side of the column. Second, the velocity with respect to a plane moving at  the 
speed U is 
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(4.6.6) 

that is, it is unsymmetrical about the plane moving at  the mean speed, but yet 
the column of tracer spreads out symmetrically. The explanation, as we have 
discussed, lies in the effects of the radial molecular diffusion. 

Because of the symmetry of the problem, we employ the binary, unsteady, 
axially symmetric convective diffusion equation with a constant diffusion 
coefficient: 

(4.6.7) 

The criterion for the “pure convection” case discussed earlier is the smallness of 
both diffusional terms on the right side of Eq. (4.6.7) compared with the 
convection term on the left side. Alternatively, this may be expressed as the 
largeness of the radial and axial diffusion times, a2/D and LLID, respectively, 
compared with the convection time LIU. Here, a and L are the characteristic 
lengths over which there is an appreciable concentration change in the radial 
and axial directions, respectively. 

With the diffusion Peclet number 

Ua 
P e =  - 

D 
(4 .6 .8)  

the criterion to neglect radial diffusion may be written 

(4.6.9a) 
L 

Pe % - (pure convection) 
U 

and to neglect axial diffusion, 

(4.6.9 b) Pe % - (pure convection) 

If L > a and Eq. (4.6.9a) is satisfied, then the above inequality is automatically 
satisfied. The inequalities may also be interpreted as indicating that the diffusion 
length (Dt)”‘ is small with respect to lengths u and L,  respectively. Mathemati- 
cally, this limit is associated with a singular perturbation problem, since the 
highest derivatives of the system are neglected. 

Another limit is that of simple axial diffusion in a stationary medium 
(Fick’s second law), In that situation the radial diffusion time a’/D must be 
short compared with the convection time LIU or 

a 
L 

Pe-4 - L (pure axial diffusion) (4.6.1 Oa) 

This implies that the relative changes in radial concentration are small because 
of the rapid “washout” of any radial gradients that appear. On the other hand, 
the axial diffusion term must dominate the convection term. Alternatively, the 

U 
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axial diffusion time L2/D must be short compared with the convection time 
L I U .  Both statements lead to the condition 

(4.6.1 Ob) 
a 
L 

Pe<. - (pure axial diffusion) 

If L > a  and Eq. (4.6.10b) is satisfied, then Eq. (4.6.10a) is automatically 
satisfied. 

A.A. Sonin has observed that the domains of these two limiting cases may 
be conveniently illustrated in a log-log plot of Lla versus Peclet number, as 
sketched in Fig. 4.6.4. In the diagram, regions below the curves Pe = a / L  and 
Pe = L / a  have been left blank to indicate the transition to other behaviors, 
which we examine below. 

The dispersion model discussed next is that treated by Taylor, where the 
times are such that axial convection is important, but where radial diffusion can 
be assumed large in comparison with axial diffusion. For the unsteady con- 
centration term d c l d t  in the axially symmetric convective diffusion equation to 
be of the same order as D ( d 2 c l d r 2 ) ,  we have with r - a  that 

a2 
t - -  

D 
(4.6.11) 

The dispersion calculation is considerably simplified when the radial 
molecular diffusion D ( d 2 c l d r 2 )  is supposed large in comparison with the axial 
molecular diffusion D(d ' c l d x ' ) .  With the characteristic lengths as before, this 
implies ( L / u ) ~  + 1. But with L = U t  and t - a2/D, the criterion for the neglect of 
the axial gradients is 

Pe+ 1 (4.6.12) 

- 4  - 3  - 2  -1  0 1 2 3 4 IogPe 

Figure 4.6.4 Axial diffusion and convection limits. 
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At still larger times, t a2 /D ,  the radial diffusion term continues to play a 
role, but the smaller radial concentration change is now controlled by convec- 
tion rather than radial diffusion. The requirement to encompass this larger time 
scale obtains from replacing t by LIU to give 

L 
- *Pe 
U 

(4.6.13) 

We shall show a posteriori that the criteria derived for the applicability of 
Taylor's model, as defined by Eqs. (4.6.12) and (4.6.13), are correct to within 
constants of O(1). 

With axial diffusion neglected, the axial transfer of c can be due only to 
convection, in which case it is convenient to consider the convection with 
respect to axes that move with the mean speed of the flow U .  The concentration 
and velocity are then defined with respect to these axes. The velocity so defined 
is given by U ( l  - 2 r L / a L ) ,  whence the diffusion equation transforms to 

The coordinate x '  denotes the moving axis defined 

x ' = x -  U t  

(4.6.14) 

by 

(4.6.15) 

and $ / a t  denotes differentiation with respect to time at  points fixed relative to 
the axes moving with velocity U.  One boundary condition is that for an 
impermeable wall 

d c  
- = O  a t r = u  
d r  

(4.6.16) 

and the other is that c is finite at  the axis of the tube r = 0. 
Taylor (1953) now made the brilliant assumption that to a first approxi- 

mation the flow is quasi-steady with respect to axes moving with mean speed U ,  
and that the concentration variation with respect to these axes is purely radial. 
His solution is therefore an asymptotic one valid for large time, that is, for 
t % a'iD. Actually in his paper he noted that the mean velocity across any plane 
x '  is zero, so the transfer of c across such planes depends only on the radial 
variation of c. He then made essentially the same assumption as above by 
assuming that in Eq. (4.6.14), if c were independent of x with t large, d c i d x '  
would be independent of r .  Therefore 

is readily integrated to give the solution 

(4.6.1 7) 

(4.6.18) 
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which satisfies the boundary condition at  Y = a that d c l d r  = 0. Here, co is the 
finite concentration at the tube axis. 

The average concentration over the tube cross section is defined by 

O n  integrating the solution for c over Y ,  we obtain 

- 1 Ua2 d c  
O 3 4 0  dx '  

c = c  +----- 

enabling c to be expressed in terms of the mean concentration as 

(4.6.19) 

(4.6.20) 

(4.6.21) 

which says c approaches the mean value 2, the radial variation being small. This 
form is more appropriate than Eq. (4.6.18), since in problems of transport along 
a tube the mean concentration C is more significant than cg. 

Differentiating Eq. (4.6.21) gives 

dc  d c  

dx' dx' 
-=z- 

whence, following Taylor, we have 

a2U 

(4.6.22) 

(4.6.23) 

where again L is the characteristic distance over which the greatest change in c 
occurs. This inequality can be written 

4L 
- +Pe 
a 

(4.6.24) 

which may be compared with the earlier approximate result Lla  % Pe. Note that 
the inequality of Eq. (4.6.23) is satisfied for times large compared with a2/4D, 
which was the basis upon which the earlier result was derived. It follows that 
the gradient of d c l a d  is approximately equal to the gradient of the mean 
dEldx' ,  when the radial dispersion model applies. 

Now the average mass flux of solute across any section x '  is 

1 

lo cut 5 d( $1 (4.6.25) 
1 "  ?= 7 1" pu'.2.rrr dr = 2M 

p a  

where ti' is the velocity with respect to the moving axis x' (Eq. 4.6.6) and 
p = Mc. Both the mass concentration p and molar concentration c refer to the 
solute, although a subscript 1 has not been appended. Substituting Eq. (4.6.21) 
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for c in Eq. (4.6.25), with dcldx’ replaced by dc ldx ’ ,  and integrating, we find 
that the average mass flux relative to the moving axes is given by 

(4.6.26) 

where 6 = MG (not to be confused with a mean density averaged over a number 
of species). This rather remarkable result says that the average solute con- 
centration is dispersed relative to a plane that moves with the mean velocity U 
exactly as though it were being diffused by a molecular diffusion process with 
an effective diffusion coefficient 

a 2 u 2  
D r f i  = 481) (4.6.27) 

This is frequently termed the Taylor dispersion coefficient. 
Now from conservation of mass applied in the moving reference frame, 

(4.6.28) 

where d i d t  is differentiation with respect to time a t  a point where x’ is constant. 
Substituting the result of Eq. (4.6.26) into Eq. (4.6.28), we obtain the equation 
for longitudinal dispersion 

d c  d 2c 
- = Drff - 
d t  d x I 2  

(4.6.29) 

or  the same form with respect to 6. In the original fixed coordinate system x the 
equation, here termed the Taylor dispersion equation, is written 

d c  d c  d 2c 
- + u - = Deff - 
d t  d X  d X 2  

(4.6.30) 

The range of validity of the last two equations is defined not only by the 
inequality 4 L l a  + Pe but also by the condition that the axial molecular diffusion 
must be negligible compared with the dispersion effect, or 

a 2 U 2  
D G -  

48 D 
(4.6.31a) 

This criterion can be written 

P e + 7  ( 4.6.3 1 b) 

which may be compared with the more approximate criterion derived earlier of 
Pe % 1. Combining the above inequality with the requirement that 4 L i a  + Pe 
defines a region in the Lla-Pe plane where the Taylor model is valid, namely 
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L 
a 

4 - S P e * 7  (4.6.32) 

Just as “pure axial diffusion” is in a sense an opposite limit to “pure 
convection,” so also is “convective axial diffusion” an opposite limit to 
“convective radial diffusion” (Taylor dispersion). The convective axial diffusion 
limit, as with the Taylor dispersion limit, characterizes the convection at  the 
mean flow speed U ,  whereas true convection is at the actual local speed. The 
criterion for the axial convection term to be of the same order as the axial 
diffusion term is 

D 
t - -  

U 2  
(4.6.33) 

where t is characteristic time. For larger times, t + D /  U ’, the axial diffusion still 
cannot be neglected in comparison with axial convection, although the smaller 
axial concentration change is now controlled by convection rather than axial 
diffusion. In all cases, radial diffusion occurs so quickly by comparison, in a 
time of the order of a2/D, that any changes in radial concentration are always 
small compared with the mean concentration. 

Using the above criterion and arguments similar to those to define the 
Taylor solution range, but with the constants chosen to agree with the Taylor 
solution, we find that for convective axial diffusion to be the dominant mode 
the inequality 

(4.6.34a) 4 - 9 P e e 7  

must be satisfied. An additional criterion comes from the fact that the convective 
term U(d2ldx) enters whenever it is greater than, say, 0.1 of the diffusion term 
D(d2Eldx2) ,  from which we also require 

L 
a 

l a  
10 L 

P e > -  - (4.6.34b) 

Clearly there is a region between Pe < 7 and Pe 9 7, with 4 L i a  + Pe, where 
both radial and axial diffusion are important. Aris (1956), in a mathematically 
elegant paper, showed that the governing equation for the mean concentration 
distribution averaged over the tube cross section can be written in the form of 
the Taylor dispersion equation, with 

Deff = D (  1 + g) (4.6.35) 

This is termed the Taylor-Ark dispersion coefficient, and is simply the sum of 
the axial molecular diffusion coefficient and the Taylor radial dispersion 
coefficient. As can be seen, at large Peclet numbers D,,,lD increases as the 
square of the Peclet number (the Taylor dispersion limit), and at  small Peclet 
numbers D,,,/D approaches 1 (the convective axial diffusion limit). 
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Aris obtained his result by using a moment method in which he calculated 
the total moments of the concentration c ( x ,  Y, t )  and the average concentration 
C(x, t )  in the respective forms 

2 + =  

a - x  

M , , ( t )  = -;i / X ”  dx 1: c ( x ,  Y, t ) r d u  II = 0, 1 ,2 , .  . . (4.6.36) 

and 

The functions M ,  ( t )  were determined from the complete unsteady axially 
symmetric convective diffusion equation (Eq. 4.6.7), and M, ( t )  were obtained 
from the Taylor dispersion equation, which was used as the “model” equation. 
The “phenomenological coefficients” U and Deff in the equation were de- 
termined by matching the first three moments of the infinite sequence M , , ( t )  to 
M,,( t )  for asymptotically large times ( t ~  a21D). Applying his scheme to the 
circular capillary problem, Aris showed that Deff, where axial molecular 
diffusion is not neglected, is given by Eq. (4.6.35). Fried & Cornbarnous (1971) 
later showed that the satisfaction of the first three moments for t-- implies 
that C(x, t ) ,  obtained as a solution of the Taylor dispersion equation with 
llc,t = D(  1 + Pe2/48), is asymptotically the solution of the complete, unsteady, 
axially symmetric convective diffusion equation averaged over the cross section. 

The Taylor-Aris result can be shown in a somewhat simpler mathematical 
way by starting with the complete convective diffusion equation (Eq. 4.6.7), 
including the axial diffusion term. The procedure is essentially the same as 
Taylor’s. Equation (4.6.7) is integrated over the tube cross section, since what is 
of interest is the average concentration, and the radial concentration distribution 
is given by Eq. (4.6.21). The replacement of dcldx’  by dCldx ’  is still made. The 
analysis follows through as before. In addition to requiring t % a2 /D,  we must 
also require t P DiU‘. Aris’s more formal procedure shows that only the 
requirement t $- a’iD is actually needed. 

Following A.A. Sonin, Fig. 4.6.5 indicates the regions of the various 
solution forms in a log-log plot of L i a  versus Pe. The regions are distinguished 
by using a ratio of 10: 1 to define “large compared with” and 1 : 10 to define 
“small compared with”. As an exception, we have taken the liberty of defining 
the convective axial diffusion region in the figure by the criterion Pe > 0.4a/L 
rather than O.la/L, as in Eq. (4.6.34b) in order to match the corresponding 
Taylor-Aris limits. This small difference is not important because of the 
order-of-magnitude arguments used. There is no sharp delineation between 
regions. In fact, with Deif equal to the Taylor-Aris value, the convective 
diffusion equation is appropriate everywhere in the regions covered by what we 
termed the convective axial diffusion, Taylor-Aris, and Taylor solution regions. 
Note also, that the pure axial diffusion region is simply a defined limit and that 
the convective and pure axial diffusion regions form a continuum. 
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log Lla 

Pe = 0.7 Pe = 70 

Figure 4.6.5 
capillary tube (after A.A. Sonin, M.I.T., personal communication). 

Regions of applicability of various dispersion solutions for a tracer in a 

In connection with the present and following discussions, it is of interest to 
show some experimental results that Taylor (1953) obtained on the dispersion 
of a tracer introduced into water flowing in a capillary tube. Taylor used an 
approximately 1.5-m-long circular glass tube with a 0.5-mm bore and water 
flow speeds as low as about 0.05 mm s-’. As a tracer he employed potassium 
permanganate (KMnO,), which has a very strong, dark purple color in solution, 
so it is easily seen. Its concentration in the glass capillary could be measured by 
comparison of the color intensity with a solution of known concentration. The 
test conditions were within the range where Taylor’s dispersion model would be 
expected to hold. 

One of the remarkable predictions of the theory that Taylor sought to 
check by his experiments was that an initially concentrated mass would be 
dispersed symmetrically about the point x = Ut. To this end the introduction of 
the small volume of permanganate solution at the capillary entrance could be 
modeled as a delta function input at  time zero, namely 

(4.6.38) n0 
C =  7 6 ( x )  r a  

at t = 0 

where no is the number of moles of substance introduced. For this initial 
condition the solution to the dispersion equation is easily shown to be 

(4.6.39) 
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Figure 4.6.6 
capillary tube from Taylor dispersion model (after Levenspiel 1972). 

Mean concentration distribution of a tracer a t  different positions along a 

Figure 4.6.6 illustrates qualitatively the behavior of Taylor's predicted 
mean concentration distribution along a capillary, that is, in time. At any instant 
the distribution is symmetrical. This self-similar Gaussian solution will only 
prevail at  sufficiently large times, Figure 4.6.7 is a more detailed illustration at a 
given time of the concentration profile with respect to a coordinate system 
translating with the mean speed of the flow. The distribution sketched follows 
from Eqs. (4.6.39) and (4.6.21) with d c l d x '  = ac/dx ' .  Also sketched in are the 

t c  

Figure 4.6.7 
mean flow speed from Taylor dispersion model. Solute paths denoted by arrows. 

Solute concentration distribution in coordinate system translating with 
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solute paths showing the motion relative to the higher-velocity regions at the 
tube center and the lower-velocity regions at  the tube wall. 

In Fig. 4.6.8 are shown the results from the set of Taylor’s experiments 
that give the distributions of mean concentration at three stages of dispersion. 
Taylor fitted data like this at  a given position (time) to the Gaussian function 
solution, Eq. (4.6.39), and in this way determined a best-fit value of De((. The 
coefficient of the exponential, which is equal to the maximum value of the 
Gaussian, is the best-fit value of the maximum concentration. 

What is of particular interest in the results of Fig. 4.6.8 is a comparison of 
the measured distributions with those that would have obtained if there were no 
diffusion and the material had been dispersed convectively and, therefore, 
uniformly. Taylor calculated the total amount of dispersed material by measur- 
ing the area of the curve labeled 111, the peak of which is at  1.22m. If this 
material were uniformly distributed, according to Eq. (4.6.5) for an initial slug 
of solvent of finite width A, it would have the constant mean value FoA/2Ut ,  
where Co is the initial mean concentration. Taylor pointed out that for the 
material distributed through 2 x 1.22 m, this constant mean value would only 
have been O.O18C, ,  which may be compared with the observed maximum 
concentration of 0.4C, shown by curve 111, indicating the marked effect of 
diffusion in preventing a dissolved material from being dispersed. 

In concluding this discussion of Taylor dispersion, we mention Brenner’s 
generalization to nonrectilinear spatially and time-periodic flows (Brenner & 

.5 

x (m) 

Figure 4.6.8 Measured mean concentration distributions at three positions along a 
capillary tube. Dashed line is distribution that would be due to convection alone for 
comparison with curve I l l .  [After Taylor, (3.1. 1953. Dispersion of soluble matter in 
solvent flowing slowly through a tube. Pvoc. Roy. Soc. A219, 186-203. With per- 
mission.] 
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Edwards 1993). Brenner’s work generalizes the moment analysis techniques 
introduced by Aris. The idea behind the approach is that the media considered 
can generally be characterized at  two different length scales, a local and global 
one (cf. Section 1.1). For the Taylor dispersion problem in a circular tube, the 
local or microscale is the tube radius a and the global or macroscale is L ,  where 
L * a. Generally our interest lies in describing the average transport process at  
the length L ,  which is the characteristic distance over which the mean solute 
concentration field has a sensible change. Generalized Taylor dispersion is valid 
only for times large enough that the particles have had an opportunity to sample 
the spatially inhomogeneous flow at the microscale. For dispersion in a circular 
tube, this flow is the parabolic velocity profile across the tube. 

In general in complex media, the convection and diffusion of a solute is a 
difficult problem to analyze at  the microscale and the moment method enables 
the analysis to be carried out at  the macroscale leading to the replacement of the 
convective-diffusion problem by an effective global velocity and an effective 
dispersion tensor as in Eq. (4.6.30). Brenner’s procedure analyzes the time 
evolution of the spatial moments (cf. Eq. 4.6.36) of the conditional probability 
density that a Brownian particle is located at  a given position at a specific time 
knowing the position from which it was initially released into the fluid. 

4.7 Gel Chromatography and Capillary Models of 
Porous Media 

Gel chroinatography or size exclusion chromatography, as it is frequently 
called, is basically a separation procedure whereby solutes are fractionated 
according to their molecular size (Dubin 1988). It is often used in the large-scale 
purification of macromolecules, including enzymes and other proteins, and in 
fractionating nucleic acids and small molecules. The gels or resins used as 
molecular sieves consist of cross-linked polymers that are generally inert, do  not 
bind or react with the solute, and are uncharged. In the simplest steric picture 
these gel particles contain small pores into which molecules of a size smaller 
than the pore can move but particles of a size larger cannot (hence the term size 
exclusion). 

The basis of gel chromatography is quite simple and is illustrated in Fig. 
4.7.1 for the separation of two solute molecules of different sizes (Freifelder 
1982). A column containing a packing of small spherical resin beads is used. A 
thin band of solution containing the molecules of various dimensions (two in 
our example) is then passed onto the top of the column. The molecules larger 
than the pores move only in the void space between the particles and hence are 
not retarded by them. However, the molecules smaller than the pores diffuse in 
and out of the gel particles with a probability that increases with decreasing 
molecular size and in this way are slowed down in their movement down the 
column. Solvent is passed through the column at a slow enough rate to allow 
the molecules to equilibrate with the gel particles at  each level. Molecules are 
thus eluted from the column in order of decreasing size or, if  their shape is 
relatively constant, decreasing molar mass. 
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Figure 4.7.1 Separation of two molecules by passage through a column containing gel 
particles that are accessible to the small molecules but inaccessible to the large ones. 
[After Freifelder, D.M. 1982. Physical Biochemistry, 2nd edn. San Francisco: W.H. 
Freeman. Copyright 0 1976, 1982 W.H. Freeman and Company. With permission.] 

Introduced into the analysis of the procedure is the concept of a partition 
coefficient (T that  characterizes the probability of gel accessibility to a molecule. 
It is defined as the ratio of the solute mass concentration inside the gel t o  that 
outside: 

(4.7.1 ) 

where p = solute mass concentration in the feed 
pin = solute concentration in the gel 

mi,, = solute mass in the gel 
V,, = internal volume of pores accessible to  the solvent 

No te  that accessibility to the solvent does not imply accessibility to the solute. 
As before, the species subscript i is to be understood, there being a different 
partition coefficient for each species. If the pores of the gel were all of uniform 
size and  the accessibility were only a steric one, then (T would be 1 for molecules 
smaller than the pore size and 0 for molecules bigger. For a distribution of pore 
sizes, (T will vary gradually with molecular size. For similar shapes, size is related 
to molar mass, and  for a chromatographic separation of various proteins on  any 
particular resin a general correlation has been shown to be of the form (Cantor 
& Schimmel 1980) 
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u = - a  log M + b (4.7.2) 

where a and b are constants. 
In the chromatographic procedure described, the volume of solvent that 

must flow through the column before a species emerges is measured. This 
volume is termed the elution volume, and the procedure itself is often referred to 
as elution chromatography. If the flow in the packed resin bed were completely 
plug flow and we were to neglect diffusion, dispersion, mass transfer resistance, 
and finite absorption and desorption rates, then a thin band would remain a 
thin band throughout the column length. Now a solute completely excluded by 
the resin ( a  = 0) will displace a volume corresponding to the void volume EV, 
where V is the total column volume and F is the void fraction. On the other 
hand, a solute that can enter some of the pores will have to displace the 
accessible internal volume aV,, in addition to the void volume. At a constant 
flow rate it will travel down the column more slowly and emerge after eluting a 
volume 

v, = FV + U Y "  (4.7.3) 

The procedure used to find u is to determine EV + V,, by measuring the mass of 
water taken up by dry resin, and to determine EV by measuring the elution 
volume of a particle much larger than the gel pores. 

In terms of the fraction of column cross-sectional area available to the 
solute, a, the elution volume may be written as 

V, = a A L  (4.7.4) 

where A is the volume cross-sectional area and L is the column length, and, 
from Eq. (4.7.3), 

(4.7.5) 

Here, the first term in parentheses is the cross-sectional void area, and the 
second term is the cross-sectional internal area of the gel available to the solute. 
The mean interstitial velocity or effective velocity through the column is 

(4.7.6) 

where Q is the constant volume flow rate at  which the column is eluted and t is 
the time it takes for the band to move down the column. 

What we have described is an idealized picture, and the bands of solute 
will not remain thin but will spread out as they move down the column for the 
reasons described above. The error, for example, in using the molar mass 
determination described in conjunction with Eq. (4.7.2) is primarily a result of 
the band breadth during elution. By way of illustration, we ask the question, 
what would be the actual shape of an eluted band of solute if dispersion were to 
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dominate, recognizing that with a number of solutes the more the bands are 
spread out the greater will be the loss of resolution in the separation of the 
different solutes? 

The flow situation in the porous medium comprising the column of packed 
resin beads is a complex one. One approach long used to model flow through 
porous media has been to consider the medium as made up of bundles of 
straight capillaries or assemblages of randomly oriented straight pores or 
capillaries in which the flow is of Poiseuille type. 

It  has been well established by experiment that for low Reynolds number 
flow through porous media the pressure drop follows Darcy’s law. In one 
dimension Darcy’s law may be written 

(4.7.7) 

where the superficial velocity U is the volume flow rate through the medium 
divided by its total cross-sectional area; that is, it is the uniform velocity 
upstream of the medium. Note that this velocity is lower than the interstitial 
velocity U ,  because of the volume taken up by the solids. The constant k is 
called the permeability and has the dimensions of length squared. In terms of the 
capillary model, comparison of Darcy’s law with the low Reynolds number, 
inertia free Poiseuille solution (Eq. 4.2.14) shows that dimensionally k - a’, 
with a the characteristic radius of the channels. 

In what follows we derive an empirical relation for the permeability, 
known as the Kozeny-Carman equation, which supposes the porous medium to 
be equivalent to a series of channels. The permeability is identified with the 
square of the characteristic diameter of the channels, which is taken to be a 
hydraulic diameter or equivalent diameter, d,. This diameter is conventionally 
defined as four times the flow cross-sectional area divided by the wetted 
perimeter, and measures the ratio of volume to surface of the pore space. In 
terms of the porous medium characteristics, 

(4.7.8) 

where Vvold is the volume of voids and A is the total surface area. For a straight 
circular capillary, d, is the capillary diameter. Since the porosity E is defined by 

where V is the total volume of the medium, we may write 

4EV 
d ,  = - 

A 

(4.7.9) 

(4.7.10) 

It is common to express the total surface area in terms of an inverse length, 
termed the specific area S, which is the ratio of the surface area to the volume of 
the solid’s fraction of the porous medium: 
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(4.7.1 1) 

Substituting the above definition of the specific area into Eq. (4.7.10), we obtain 
the following expression for the equivalent diameter: 

4 E  
d, = ____ 

S(1 - &) 
(4.7.12) 

As noted, the average interstitial or effective pore velocity in the channels, 
U,, is greater than the superficial velocity U ,  due to the volume occupied by the 
solids. I t  is supposed that 

U U = -  (4.7.13) 

Replacing U by U, in Eq. (4.7.7) and assuming that k - dz, where d, is 
given by Eq. (4.7.12), we can write Darcy’s equation in the form 

KS’(1 - & ) 2  
= - p U  - dP 

dx & ?  

where K is the Kozeny constant. The permeability is thus 

E 3  

K S 2 (  1 - &)2 
k =  

(4.7.14) 

(4.7.15) 

which is termed the Kozeny-Carman equation. P.C. Carman proposed a value of 
5.0 for K .  IJsing this value of K and assuming the porous medium to be 
composed of uniform spheres of diameter d, we obtain that S = 61d and Eq. 
(4.7.15) reduces to a commonly written form of the Kozeny-Carman equation: 

d ’ E 3  
k =  

180(1 - E ) 2  
(4.7.16) 

I t  is now understood that the Kozeny “constant” is by no means a 
universal constant but varies with porosity, particle shape, and orientation. 
Moreover, measurements have indicated that the effective interstitial velocity 
may be larger than U/E because the void volume available for the bulk flow can 
be smaller as a result of stagnant voidage. In addition, it is common to account 
for the sinuous nature of the capillaries-that is, a larger actual flow length than 
the straight-through thickness of the porous medium-by introducing a tor- 
tuosity factor as proposed by Carman. However, these correction factors are 
largely empirical and difficult to quantify from purely theoretical considerations. 

Despite our use of a capillary model to characterize a porous medium, 
most porous beds employed for chromatographic purposes are random and 
generally the medium is isotropic. In such media, the effective solute dispersivity 
still arises from the nonuniform pore velocity coupled with molecular diffusion 



Gel Chromatography and Capillary Models of Porous Media 101 

resulting in a dispersive mixing process at  the macroscale characterized by an 
effective dispersion tensor and global velocity as for Taylor dispersion in a 
capillary (Section 4.6). 

In a circular bed, the effective dispersion tensor is anisotropic and is 
composed of the longitudinal and lateral dispersion coefficients D!ff and D:,,, 
respectively. The longitudinal dispersion coincides with the direction of the 
mean fluid flow with the lateral dispersion normal to this direction. At high 
Peclet numbers, the longitudinal dispersion is large in comparison with the 
lateral dispersion, since the component of the fluid velocity parallel to the mean 
flow direction has the largest gradients. The lateral dispersion D:ff is associated 
with the weaker lateral fluid motion, whence D!ff 9 D:,,. 

The Taylor-Aris result for the dispersion coefficient (Eq. 4.6.35) has been 
applied to the empirical correlation of measured and calculated longitudinal 
dispersion coefficients in flow through packed beds and porous media (see 
Eidsath et al. 1983). Typically, the velocity in the Peclet number of the 
Taylor-Aris formula is identified with the superficial velocity, and the capillary 
diameter with the hydraulic diameter for spherical particles. An alternative 
velocity suggested by the capillary model is the interstitial velocity, and an 
alternative length is the square root of the permeability. In an isotropic packing 
of particles ( k ) 1 ' 2  is about one-tenth the particle diameter (Probstein & Hicks 
1982).  

At large Peclet numbers where diffusive mixing is dominant, as for 
dispersion in a capillary tube, from Eq. (4.6.35) 

D ! ~ ~  - Pe2 (4.7.17) 

If, however, the dispersive effects are due principally to velocity variations 
within the medium, then Deff should be proportional to U ,  (Adler 1992) and 

D!,, - Pe (4.7.18) 

There is lack of agreement in the literature on the behavior of the longitudinal 
dispersion coefficient with Peclet number, other than it tends to increase 
monotonically with Pe. For large Peclet numbers the increase is generally found 
to have the power law behavior Pen, with 1 < 1z < 2 (Plumb & Whitaker 1990, 
Adler 1992, Brenner & Edwards 1993). 

To the extent that dispersion in an inertia free porous medium flow arises 
from a nonuniform velocity distribution, its physical basis is the same as that of 
Taylor dispersion within a capillary. Data on solute dispersions in such flows 
show the long-time behavior to be Gaussian, as in capillaries. The Taylor 
dispersion equation for circular capillaries (Eq. 4.6.30) has therefore been 
applied empirically as a model equation to characterize the dispersion process in 
chromatographic separations in packed beds and porous media, with the mean 
velocity identified with the interstitial velocity. In so doing it is implicitly 
assumed that the mean interstitial velocity and flow pattern is independent of 
the flow rate, a condition that would, for example, not prevail when inertial 
effects become important. 
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In chromatographic separations, as with Taylor’s capillary tube measure- 
ments, the dispersion coefficients are determined empirically. One procedure is 
matching a solution of the dispersion equation, such as that for a step change in 
inlet concentration a t  the top of the column, with the corresponding measured 
change in average concentration of the displacing fluid that is observed with 
time, say, at  the bottom of the column. Direct scanning procedures of the solute 
distribution along gel columns have also been developed for determining the 
dispersion coefficient by appropriate matching with a theoretical solution 
(Cantor & Schimmel 1980). 

For a sharp band of solute run onto the top of a packed gel column the 
solution is the Gaussian of Eq. (4.6.39). To compare with the experiments of 
the eluting column, we replace the variables as follows: 

V 
t-+ G (4.7.19) 

Here, V, is the elution volume, and V is the total volume that has flowed 
through the column. Since the measurements are usually made at  the bottom of 
the column, x has been replaced by the column length L. Therefore, for the 
concentration of solute eluting from the column as a function of the volume 
flow rate and volume of flow, dropping the longitudinal dispersion notation we 
can write 

(4.7.20) Q 
a ’A’ V4 Deff 

As discussed, the determination of Deff is normally empirical, although it might 
be deduced from semiempirical o r  theoretical considerations. 

From the above formula, bearing in mind the caveats mentioned in its 
derivation, we can see that decreasing Deff will decrease the spread of the solute 
concentration distribution and, in this way, increase the resolution. Since Dcff 
increases with Pe, then one way to decrease Deff is to decrease the permeability k 
by going to smaller resin beads. Decreasing the resin size will also reduce any 
mass transfer resistance within the beads and, hence, tend to reduce band 
spreading. A lower permeability, however, means that to maintain the same 
flow rate we must increase the pressure drop along the column and not just 
employ gravity drainage. It is clear that operating at  the highest flow rate 
possible for equilibration reduces the time for spreading by dispersion and hence 
increases the resolution. The use of very fine particles, about 10 pin in diameter, 
and high pressure to maintain an adequate flow rate is called high-performance 
or high-pressure liquid chromatography (HPLC). Figure 4.7.2 shows a typical 
difference in the separation of four components by HPLC and ordinary chroma- 
tography with larger particles (Freifelder 1982). Finally, any alteration of the 
velocity distribution, such as might result from inertial effects or non-Newto- 
nian behavior, will alter the dispersion characteristics. 
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Fig. 4.7.2 Comparison of normal chromatography (A) and high-performance liquid 
chromatography (B) in the separation of several components of the citric acid cycle: (1) 
a-ketoglutaric acid; ( 2 )  citric acid; (3) malic acid; (4) fumaric acid; and (5) succinic acid. 
The times to obtain the separations are 180 and 20 minutes for normal chromatography 
and HPLC, respectively. [After Freifelder, D.M. 1982. Physical Biochemistry, 2nd edn. 
San Francisco: W.H. Freeman. Copyright @ 1976, 1982 W.H. Freeman and Company. 
With permission.] 
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Problems 

4.1 Derive the Langmuir adsorption isotherm (Eq. 4.1.8) under the assump- 
tions tha t  there are a finite number of free adsorption sites, the adsorption 
rate is second order in c and  the available adsorption sites, and  the 
desorption rate is first order in the material adsorbed. Show what  the 
constant b represents. 
T h e  estimate given in Section 4.2 and  the solution presented in Section 4.3 
describe the behavior of the mass transfer from a channel wall a t  constant 
concentration into a flowing solvent with a fully developed velocity profile 
tha t  is initially free of solute. In deriving this solution, we  assume the 
solute concentration zero outside the concentration boundary layer near 
the wall. Sufficiently far downstream of the channel entrance this will n o  
longer be the case. By considering a control volume of axial length L along 
a long circular tube of radius a into which a solute-free liquid flows arid 

4.2 
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out of which flows liquid plus solute, derive a dimensionless parameter 
that must be large to ensure the validity of the solution presented. This 
parameter is known as the Graetz number. 
Liquid with a zero initial solute concentration enters a long cylindrical 
tube of radius a along which a single species solute is supplied at a 
constant flux 1: (mol m-' s-'). It is assumed that the velocity profile is 
fully developed a t  the entrance to the tube, and we are interested in 
determining the behavior of the concentration profile from the axial 
position a t  which the concentration boundary layer becomes fully de- 
veloped. 
a. Taking the origin of the axial coordinate x to be at the position where 

the concentration profile becomes fully developed, find an expression 
for the concentration c in terms of x, Y, j;:, a, M, and D, where Y is the 
radial coordinate measured from the tube center, D is the diffusion 
coefficient, and U is the mean fluid velocity. The velocity profile is 
given by 

4.3. 

b. Determine the Nusselt number for mass transfer, often called the 
Sherwood number, defined by 

where c,, is the concentration at  the wall and c,, is the mixing-cup or 
bulk average concentration at  any cross section defined by 

1 
c,,, = - IOa uc .27i-r dr 

T U 2 6  

4.4 In a so-called unstirred, batch-operated, reverse osmosis system a long 
cylinder holding a salt solution is closed by a semipermeable membrane at  
one end and a piston at  the other. The pressure applied by the piston 
initially is that corresponding to osmotic equilibrium; then at  time t = 0, 
the pressure is suddenly increased to a predetermined value at which it is 
maintained. The result is that there will be a flow through the membrane, 
which in general will be time dependent, and neglecting any wall effects 
there will be a concentration variation in the solution that will depend on 
time and distance into the solution measured from the membrane. 
a. With u U t ( t )  the permeation velocity through the membrane, co the 

initial salt concentration in the solution, c, the salt concentration at  
the membrane, and c p  the salt concentration on the product side of the 
membrane, write down the equation governing the salt diffusion, 
together with the boundary and initial conditions. Assume that the 
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rejection coefficient R ,  = 1 - cp/c,, is constant but that it may be 
different from unity. 
Suppose that, following Eq. (4.4.4), b. 

U, = A ' ( A p  - BR,c,) 

where B is a constant. With the characteristic velocity taken to be 
A'Ap, determine what the other appropriate characteristic variables 
would be and write the governing differential equation, together with 
the boundary and initial conditions for the concentration in dimen- 
sionless form using the characteristic variables. Upon what indepen- 
dent dimensionless parameters will the dimensionless concentration, 
wall concentration, and permeation velocity depend? 

Water is contained between two infinite parallel plates separated by a 
small distance h = m. The bottom plate is held stationary, and the 
top plate is moved at  a constant velocity LJ = m s- l  so that a simple 
shear flow is generated between the plates. A thin band of a dye of 
thickness A = m is injected between and perpendicular to the plates 
extending fully across the gap. The band depth is very deep and may be 
supposed to be infinite. The dye concentration is co = 10 mol m-3, and its 
molecular diffusion coefficient in water is D = 
a. From the convective diffusion equation for the dye concentration, 

make an order-of-magnitude estimate of the time for which molecular 
diffusion in the direction of motion will no longer be important and 
the times for which lateral molecular diffusion is negligible. 
Let x be the Cartesian coordinate in the direction of motion with 
origin at  the intersection of the stationary plate and center of the band 
A when it is injected into the water, and let 2 be the average 
concentration per unit depth defined by 

4.5 

m2 s-'. 

b. 

where y, which is measured positive in the direction toward the 
moving plate, is the coordinate normal to x. Within the time interval 
for which the dispersion of c takes place essentially by convection, 
what is the solution for G? 
For the simple shear flow of Problem 4.5, determine the dispersion 
coefficient by following Taylor's general approach. Neglect molecular 
diffusion in the direction of motion. Estimate the times, analytically 
and numerically, for which any approximations used in your analysis 
are valid, and the times for which diffusion in the direction of motion 
can be neglected. 
How is the result for the dispersion coefficient changed if molecular 
diffusion in the direction of motion is included? Derive your answer, 
justifying any approximation not made in part a. 

4.6 a. 

b. 
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4.7 A porous medium is modeled as made up of uniformly distributed straight 
circular capillaries of the same diameter. The flow through each capillary 
is an inertia free Poiseuille flow. By comparing the Poiseuille pressure drop 
and the Darcy pressure drop formulas, deduce an expression for the 
permeability. Discuss the difference between the result obtained and the 
Kozeny-Carman permeability. 



5 Solutions of Uncharged 
Macromolecules and Particles 

5.1 Microhydrodynamics of Macromolecules and Particles 

To this point the book has dealt principally with solutions of “simple” low 
molar mass molecules. The aim of this chapter is to examine the hydrodynamics 
of solutions of small uncharged macromolecules, that is, molecules of molar 
mass greater than about 10’. Apart from an interest in determining the general 
flow characteristics of such solutions, it is also possible to obtain information on 
the properties of macromolecules and colloidal particles from suitable experi- 
ments on their behavior in solution. Moreover, the separation of mixtures of 
suspended matter of differing physical and chemical properties, so important in 
technical and biological applications, can be accomplished by hydrodynamic 
means. 

The particle sizes of concern are in the range typically between 0.1 and 
10 p m ,  although the band may be extended by a factor of 10 on either side in 
some circumstances. The distinction between the lower size limit at  which one 
distinguishes a colloidal particle and a dissolved molecule is somewhat vague. 
Of importance, however, is that the characteristic size of the dispersed phase be 
large compared with simple molecules. In this regard note that the diameter of a 
water molecule is about 3 x p m .  Sizes of some particles of interest were 
shown in Fig. 1.3.1 of the Introduction. 

Batchelor (1976) has termed the study of flow systems of the small scale 
considered as microhydrodynamics because of the numerous distinctive features, 
many of which are physical-chemical in nature. Among the more important 
characteristics are 

Inertia forces are normally small compared with viscous forces, and 
the equation of motion for the fluid reduces to the linear Stokes form. 

The displacements of free particles due to thermal (Brownian) motion 
in time intervals characteristic of the imposed flow are often significant. 

1. 

2. 
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3 .  Free colloidal particles about a micrometer or less in size settle out so 
slowly under gravity that they may often be considered as suspended in the flow 
and moving with it. As a result, the principal concern is to determine the 
rheological properties of the colloidal suspension. 

Interfacial surface effects are important. This is a consequence of the 
fact that interfacial forces between a dispersed particle and the surrounding 
phase are proportional to the square of the particle's characteristic dimension 
and body forces are proportional to the cube, so the ratio is inversely propor- 
tional to the particle size. 

Electrokinetic effects are important because solid and liquid particles 
normally acquire a charge in aqueous solutions. However, our discussion of 
these effects will be reserved for Chapters 7 and 8, with only uncharged particles 
examined in this chapter. 

To understand the forces acting on small particles in solution, let us first 
review some low Reynolds number flow results in which inertial forces are 
negligible. The basic text on this topic is that of Happel & Brenner (1983) with 
more recent advances to be found in Kim & Karrila (1991), who also include 
computational and variational considerations, and in Leal ( 1992). 

With body forces in addition to inertial forces neglected, the incompres- 
sible Navier-Stokes equation reduces to the Stokes equation 

4. 

5. 

vp = *v2u (5.1.1) 

which, together with the continuity equation 

v . u = o  (5.1.2) 

defines the flow. This system of equations governing low Reynolds number flow 
is linear, so solutions are superposable. Moreover, since time does not explicitly 
enter the solutions, they are kinematically reversible. 

An important result from low Reynolds number theory is that for a body 
of arbitrary shape in translational motion with a velocity U the resultant force F 
exerted by the body depends on its orientation and may be written in Cartesian 
tensor notation as (Happel & Brenner 1983, Batchelor 1967) 

or, in inverse form, 

u, = U , / F /  (5.1.3 b) 

The tensor R,,, termed the translation tensor, for a rigid body depends 
solely on the size and shape of the body. The translation tensor has the 
dimensions of length and may be interpreted as an equivalent radius. In the 
polymer literature the force is usually expressed in terms o f  a translational 
friction tensor f,, . The components are called translational friction coefficients 
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or, usually, just friction coefficients. (Often the term “frictional” is used 
instead.) The inverse of the friction tensor is essentially the mobility introduced 
earlier in Section 2.5. Accordingly, in Eq. (5.1.3b) we have also introduced a 
mobility tensor u,,, which has units N-’ m s-’  or s kg-’. 

For immiscible fluid drops held spherical by surface tension, 

(5.1.4) 

where p1, is the internal viscosity of the fluid drop, which is different from p, 
and a is its radius. The limit pJp -+ 0, for which R,, -+ +as,,, approximately 
characterizes a spherical gas bubble moving through a liquid. The limit 
p,Jp -+ m, for which R,, -+ as,,, corresponds to a rigid sphere moving through a 
viscous fluid. Thus for a rigid sphere the drag force parallel to the direction of 
translation is 

F = - 6 ~ p a U  (5.1.5) 

which is the classical Stokes drag law. 
Many particles and macromolecules that cannot be modeled as spherical 

are often amenable to being modeled as ellipsoidal. The problem of the steady 
low-speed motion of a rigid ellipsoid through a viscous liquid was first treated 
by A. Oberbeck in 1876. It was analyzed subsequently by a number of authors, 
with several independent presentations (Happel & Brenner 1983). For our 
purposes we give the results as presented by Perrin (1934) for prolate and oblate 
spheroids. The prolate spheroid is a rodlike shape generated by rotating an 
ellipse around its long semiaxis a, with the two shorter semiaxes 6 identical. An 
oblate spheroid is a disk shape generated by rotating an ellipse about its short 
semiaxis a, the two long semiaxes b being identical (Fig. 5.1.1). Perrin’s work, 
although widely quoted in polymer studies, has largely bypassed the fluid 
mechanics community. 

Let R, ,  R,, R ,  be the translation coefficients for translation of an ellipsoid 
parallel to its semiaxes a,, a,, a3. For rigid spheroids generated by rotating an 
ellipse about the semiaxis a, Perrin’s solution with a,  = a and a, = a3 = b may 
be written 

8 U‘ - b2 
3 ( 2 ~ ’ -  b 2 ) S - 2 a  

R = -  

16 a‘ - b2 R = R  = -  
3 ( 2 a 2 - 3 b 2 ) S + 2 a  

where, if a > b (prolate spheroid), 

(5.1.6) 

(5.1.7) 

(5.1.8) 

while if  a < b (oblate spheroid) 
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Prolate Oblate 

b n 

a b 

a/b = 2 b/a = 2 

b 

a b 

a/b = 5 b/a = 5 

Figure 5.1.1 Four spheroids with equal volumes (after Cantor & Schirnmel 1980). 

(5.1.9) 

When a = 6, the Stokes result for a sphere is obtained. 
When Brownian motion and its attendant randomizing effect is important, 

an ellipsoid, or colloidal particles of arbitrary shape, will have various orienta- 
tions. As we have seen, there is a translation coefficient for each orientation. It 
can be shown that the mean translation coefficient, mean friction coefficient, 
and mean mobility are given, respectively, by the formulas (Perrin 1936, Happel 
& Brenner 1983) 

L 1. (1 + 1 + L) 
i: 3 f l  f 2  f 3  

1 v = - 3 ( u ,  + v, + U j )  

( 5.1 . 1 Oa) 

(5.1. lob)  

( 5.1.1 Oc) 

The subscripts 1, 2, 3 refer to the principal axes of translation, which are three 
mutually perpendicular axes fixed to the body defined such that if the body 
translates without rotation parallel to one of them it will experience a force only 
in that direction. 

From Eqs. (5.1.6) and (5.1.7) the mean translation coefficient for a prolate 
or  oblate spheroid is simply 2 / S ,  whereas for a sphere it is just the sphere radius. 
A quantity of interest, sometimes termed the Perrin factor, is the ratio of the 
mean translation coefficient (or mean friction coefficient) of a prolate or oblate 
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5 
- - 

spheroid to that of a s here of equal volume. With the volume of a prolate 
spheroid given by 3 T a b  and an oblate spheroid by 3 Ta2b the Perrin factor E is 
readily found to be 

P 

for a prolate spheroid and 

for an oblate spheroid, where p = a/b.  
In Fig. 5.1.2 the Perrin factor is plotted as a function of the axial ratio, 

defined as the ratio of the long semiaxis to short semiaxis, equal to p for the 
prolate spheroid and p - I  for the oblate spheroid. As seen, the Perrin factor is 
always greater than unity, which may have been anticipated, since for equal 
volumes the surface area of the spheroid will be greater than that of a sphere of 
the same volume, so the friction coefficients will be greater. Because the volume 
of a molecule is proportional to its molar mass, then, for a constant mass, the 
more a molecule deviates from a spherical shape, the larger will be its mean 
friction coefficient. 

For the prolate spheroid an interesting approximate form of the transla- 
tion coefficients is obtained for the case when the long semiaxis a is large 
compared with the short semiaxis b. From Eqs. (5.1.6) to (5.1.8),  by expanding 
for alb  % 1 we find that for translation parallel to the a axis 

f a  
ln(2a/b)  - 0.5 

K, = (5.1.13) 
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and for translation parallel to the b axis 

$2 

R'' = ln(2u/b)  + 0.5 
(5.1.14) 

A uniformly valid asymptotic result for the translation coefficient of a long 
but finite straight cylinder moving parallel to its axis of symmetry, with b the 
cylinder radius and 2a  its length, neglecting terms O ( a l ( l n ~ l b ) ~ )  is similar to 
Eq. (5.1.13) with 0.5 replaced by 0.81 (Brenner 1974). The analogous result for 
the translation coefficient when the cylinder moves perpendicular to its axis is 
the same form as Eq. (5.1.14) with 0.5 replaced by 0.19. (For other finite 
axisymmetric geometries see Brenner.) In passing, we recall there is no finite 
drag solution of the inertia free Stokes equation for an infinite cylinder moving 
through an otherwise unbounded flow. 

The consequence of the above results is 

(5.1.15) 

That is, the drag approaches a limit of being twice as great when the direction of 
motion is perpendicular to the axis of symmetry as it is when moving along the 
axis. As Taylor (1969) has shown, this is a property of all long axisymmetric 
bodies in low Reynolds number, inertia free flow no matter what the cross- 
sectional distribution, provided that the center of gravity of the body is in such a 
position that the viscous forces do not exert a couple about it whatever the 
orientation of the body to the force. This leads to the condition, proved by 
Taylor, that a long axisymmetric body, for example when falling in a fluid at 
constant speed, can never fall along a path that is inclined to the vertical at  more 
than 19.5", and this occurs when the axis of the body lies at  c o s - ' ( l / a )  or 
54"44' (cf. Happel & Brenner 1983). This low Reynolds number behavior might 
be utilized a5 an analytical tool for particle characterization in those cases where 
Brownian motions may be neglected. 

Another parameter of interest for comparison with experimental measure- 
ments is the couple or torque on a particle arising from rotational motion. The 
torque T about the center of rotation of a body with angular velocity o can be 
written in Cartesian tensor form as 

(5.1.1 6)  

where a,, is termed the rotation tensor. It has the dimensions of length cubed 
and may be interpreted as an equivalent volume. In the polymer literature, in 
parallel with the translational force, the torque is usually expressed in terms of a 
rotational friction tensor ( f ro , ) , , .  

A sphere is the simplest example of a body isotropic with respect to 
rotation about its center, and it can be shown that the rotation tensor at its 
center is 

4 
3 

n,, = - Tra'6,, = V,,,,6,, (5.1.17) 
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with V,,, the sphere volume. Perrin (1934) also derived the results for the 
rotation tensor for an ellipsoid of revolution, and they are 

16 (aZ - b2)b2  n,=--n 
9 2 a -  b2S 

16 a4 - b4 0 = R = - - - =  
9 ( 2 a 2  - b 2 ) S - 2 a  

(5.1..18) 

(5.1.19) 

with S given by Eqs. (5.1.8) or (5.1.9). In the case of a long slender prolate 
spheroid, where a l b  9 1, the rotation coefficient around a transverse axis, R,, 
simplifies to 

4 3  g 7rU 

In(2a/b) - 0.5 
R, = (5.1.20) 

The uniformly valid asymptotic result for a long cylindrical rod, with b the 
cylinder radius, is of the same form with 0.5 replaced by 1.14 (cf. Brenner 
1974).  Note that 0, -+ 0. 

Polymer molecules will generally have more complex shapes than the 
simple ones considered so far. A method for computing the friction coefficients 
of a structure composed of identical subunits, and spheres in particular, was 
developed by J.G. Kirkwood and J. Riseman (Bird et al. 1977). For example, a 
linear or coiled polymer can be approximated by a string of spheres, the spheres 
representing groups of monomer units of which each is impenetrable. An 
oligomeric protein might, for example, be represented by a cluster of spheres. In 
either case, the problem is to deal with the hydrodynamic interactions between 
the spheres, since each sphere, as it moves through the fluid, perturbs the 
velocity distribution of the fluid nearby, and this perturbation is felt by the other 
spheres. These models are discussed further in Section 9.2. 

Since the Stokes equations are linear and homogeneous, the velocities 
produced by different forces and boundaries a t  different points in the liquid are 
additive. Nevertheless, the solution to a multiparticle arrangement is still 
somewhat formidable. The important physical feature is that in a low Reynolds 
number flow the hydrodynamic influence of an applied force or boundary falls 
off relatively slowly with increasing distance. In particular, the velocity u 
produced a t  a point r by a force F acting at  the origin, corresponding to a point 
particle, can be shown to be 

(5.1.21) 

The Kirkwood-Riseman calculation is sufficiently detailed that we shall 
not discuss it further here. The interested reader is referred to Bird et al. (1987).  
However, the issue raised in considering complex shapes is the same one that 
arises when one questions whether the particle is not an isolated particle in 
suspension, which is the only situation for which we have outlined results. It is 
evident in a multiparticle suspension that the hydrodynamic interactions be- 
tween the particles become important. For example, from what we have shown 
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it is clear that a particle in translation would drag along its neighbors. To 
handle this general problem, we could assume a “suspension” or “colloidal” 
phase with an effective viscosity and then assume that the friction coefficients 
would be proportional to this effective viscosity. The value of the friction 
coefficients could also be obtained from sedimentation experiments where the 
force is known and the resultant suspension velocity can be measured. These are 
among the approaches that we shall discuss in the following sections and in 
Chapter 9, dealing with multiparticle suspensions. 

5.2 Brownian Motion 

The random thermal motion of suspended particles that are sufficiently large to 
be observed is termed Brownian motion, after the Scottish botanist Robert 
Brown, who in 1828 described this phenomenon from microscopic observations 
he had made of pollen grains suspended in water. We have mentioned this 
phenomenon a number of times in previous sections, and our purpose here is to 
quantify it. 

In the absence of external forces, all suspended particles regardless of their 
size have the same translational kinetic energy. The average translational kinetic 
energy for any particle is equal to $kT (by equipartition +kT per degree of 
freedom); therefore 

$rn(U2)  = 5kT (5.2.1) 

or 

3kT 
rn 

(U’) = __ (5.2.2) 

Here, rn is the mass of the particle, and (U’) is the mean square velocity in a 
fluid medium at temperature T (the symbol ( ) denotes a time-average value). 
The velocities of Eq. (5.2.2) are very much greater than the mean square 
velocities of randomly moving particles observed under the microscope. For 
example, the root mean square value ( U  ) IS about 1 .7mms-’  at  room 
temperature for a particle of 1 p m  radius and the same density as water. 
Einstein (1956) pointed out that the thermally induced fluctuations would cause 
a particle to vary in direction many millions of times per second, so the path 
traversed per second could not be resolved microscopically. He suggested 
instead that a quantity that could be more readily observed on a macroscopic 
scale and compared with the theoretical value is the rate of increase of the mean 
square displacement of a particle or, equivalently, the diffusivity. That is, as 
shown below, Brownian motion gives rise to a macroscopic diffusive flux. 

Unknown to the physical and biological scientific communities, the ideas 
on the diffusion of probabilities had been published by the French mathemati- 
cian Louis Bachelier (1900) 5 years before Einstein’s 1905 Ann. Phys. paper on 
Brownian motion. The work constituted his thesis for the degree of Doctor of 

2 112 . 
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Mathematical Sciences a t  the Sorbonne, carried out under the supervision of the 
renowned mathematician PoincarC and was published in Ann. Sci. &ole Norm. 
Sup., 3. The title of this relatively short thesis was Theory ofSpeculation and it 
dealt with the pricing of options (a much debated topic among US business 
executives today). Until the 1950s his work was unknown even to the econ- 
omics community (Merton 1992). The importance of his thesis was emphasized 
by Paul Samuelson, the Nobel Laureate in economics, who is quoted by Merton 
as saying that “Bachelier’s methods dominated Einstein’s in every element of the 
vector.” Bachelier’s paper is available in English translation (Bachelier 1900) 
and our readers may draw their own conclusions. Although we cannot presume 
in this text to change the credited authorship on Brownian motion, we can 
recognize the debt owed to Bachelier. 

Consider a suspension of rigid particles in thermal equilibrium, where the 
apparent mass of each particle (mass corrected for buoyancy) is sufficiently 
small to be neglected, so no external force is acting on the particles. The 
fluctuations of the particles are then a consequence of the random fluctuating 
force due to the response of the fluid to the thermal agitation of the particles. 
That is, the collisions of the solvent molecules with the particles cause the 
particles to execute a random walk. From random walk  considerations the 
center of mass, say G, of a particle describes an irregular trajectory with 
successive positions Go, G I ,  G,, . . . of G at times t, t + T, t + 27,. . . in- 
dependent of the direction of the preceding displacement, provided the time 7 

between displacements is not so small that the velocity changes become indefi- 
nitely large. This random walk behavior, shown in Fig. 5.2.1A, is referred to as 
translational Brownian motion. 

Similarly, for an axis bound to the particle its orientation will change 
randomly with time. If we define the orientation of the particle by the 
intersection H of the particle axis with a sphere of unit radius described around 
the center (Fig. 5.2.1B), the motion of the point H on the spherical surface is 
random. Its successive positions H,, H , ,  N, a t  times t, t + 7, t + 27,. . . along the 

(A1 (B) 
Figure 5.2.1 Brownian motion: (A) translational, (B)  rotational (after Sadron 1953).  



118 Solutions of Uncharged Macromolecules and Particles 

Figure 5.2.2 (see facing page for legend). 
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spherical surface are independent of the preceding displacement. This random 
walk behavior, shown in Fig. 5.2.1B, is referred to as rotational Brownian 
motion. 

We digress here for a moment to observe that the jagged and irregular path 
of a particle in Brownian motion is scale-invariant under a change of length 
scale; that is, it is self-similar under dilation. In the definition of Mandelbrot 
(1982),  as discussed in Section 1.3, the trajectory is geometrically a fractal. This 
is illustrated in Fig. 5.2.2. Figure 5.2.2A shows a redrawing of a tracing made in 
1912 by the Nobel prize winner Jean B. Perrin (see Perrin 1923) of the path of a 
colloidal particle in water as seen under a microscope, with the successive 
positions marked every 30 s and then joined by straight lines. Jean Perrin, not to 
be confused with his son Francis, who was referred to earlier, fully recognized 
that the trajectory is practically plane filling, in the sense that if a portion of the 
trajectory is enlarged and the particle position marked more frequently, the 
irregular path would be reproduced qualitatively. This is seen in Fig. 5.2.2B 
(Lavenda 1985), which is a numerical simulation for the path between two 
points of Perrin’s observations with a frequency of measurement 100 times 
greater than Perrin’s. 

Let us return to the analysis of Brownian motion. For simplicity we begin 
by considering the continuous one-dimensional translational Brownian motion 
as represented by a one-dimensional random walk problem. The probability of a 
displacement between x and x + dx after n random steps of length 1 is given by 
the Gaussian distribution 

P(n, x )  dx = (27rn12)-1’2e-x2’2n12 dx (5.2.3) 

N o w  consider the diffusion of a solute of concentration co in a thin layer at the 
origin x = 0 a t  t = 0. The material diffuses out, and the number of steps is taken 
to be proportional to the time; that is, 

n = Kt (5.2.4) 

This statement assumes that the “mean” motion is uniform, but this cannot be 
exact because when the direction and velocity of particle movement change 
there must be an acceleration. It is shown below that the approximation is 
indeed very accurate, from which it follows that the concentration at  any x and 
t is given by 

c = coP(x,  t )  (5.2.5) 

Figure 5.2.2 Translational Brownian motion of a colloidal particle in water. (A) Particle 
motion as observed every 30s under a microscope by Perrin (1923). (B)  Numerical 
simulation of magnified portion of particle path observed 100 times more frequently. 
[After Lavenda, B.H. 1985. Brownian motion. Sci. Amer. 252(2), 70-85. Copyright 0 
1985 by Scientific American, Inc. All rights reserved. With permission.] 
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If Eqs. (5.2.3) to (5.2.5) are indeed a solution to the one-dimensional 
diffusion equation 

d c  d 2 C  

dt  d X 2  
- = D -  (5.2.6) 

then we need only substitute these equations into Eq. (5.2.6) and see if it is 
satisfied. Doing this, we find it is satisfied with K = 2D/ l2 ,  whence 

(5.2.7) 

But this is just the solution given earlier by Eq. (4.6.39) for the diffusion of a 
solute initially concentrated at  the origin. We are therefore led to conclude that 
for dilute solutions of noninteracting particles the probability of finding a 
particle in a particular element of space is given by a solution o f  the continuum 
diffusion equation. 

The corresponding three-dimensional solution for the particle concen- 
tration appropriate to translational Brownian motion is 

(5.2.8) 

The probability of finding a particle at  a distance between r and r + dr from the 
origin at  time t is obtained by multiplying the above solution for cic,,  by the 
volume of the spherical shell 4n-r2 dr or 

(5.2.9) 

The mean displacement is zero because the positive and negative displace- 
ments are equally probable, and it is therefore not a measure of the particle 
displacement. Such a measure is given by the root mean square displacement 
( r  ) since the sign differences are eliminated. The mean square of the 
displacement is obtained by integrating the square of the displacement multi- 
plied by the probability of displacement over all possible displacements; that is, 

2 111  

( r ’ )  = lom r2P(r, t )  dr (5.2.10) 

Substituting Eq. (5.2.9) in (5.2.10) and integrating gives 

( r ’ )  = 6 D t  (5.2.1 1 )  

where D is the translational diffusion coefficient. 
A similar result is obtained for the particle motion associated with the 

random change of  orientation with time. With s the length of the arc of the 
circle between successive positions, it can be shown that 
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(s’) = 41),,,t (5.2.12) 

where D,,, is the rotational diffusion coefficient. Note that s is taken on a sphere 
of unit radius (Fig. 5.2.1B) so that D,,, has the dimensions of inverse time. 

To evaluate the diffusion coefficients following Einstein’s original thermo- 
dynamic argument (Landau & Lifshitz 1987), we assume that for the suspen- 
sion of particles equilibrium and steadiness of the distribution of the particle 
number density are established. For translation this equilibrium is brought 
about by the translational diffusion flux balancing the convective flux resulting 
from the application of a steady hydrodynamic force to each particle. Assuming 
the particle to be in inertia free flow in an infinite fluid, we can express the 
resultant drag force acting on a particle of arbitrary shape through the low 
Reynolds number relation 

F =  - f U  (5.2.13) 

The low Reynolds number, Stokes-type drag law has been written here in terms 
of the mean translational friction coefficient since it is assumed that, because 
of the Brownian motion, all orientations are equally probable. We recall that 
f-’ is the mean mobility 6. The use of a steady drag law for a particle that is 
changing its velocity rapidly can be shown to be justified on the basis that the 
velocities are of such small magnitude that the fluid acceleration can be 
neglected. 

From the equilibrium condition of the balance of diffusive and convective 
fluxes, we have 

-DVn = nu (5.2.14) 

with U the velocity acquired by the particle from the hydrodynamic force and ?z 
the particle number density (not number of moles). Hence from Eq. (5.2.13), 

f D V l n n = F  (5.2.15) 

To ensure equilibrium, Einstein assumed that the applied hydrodynamic force 
must be balanced by a steady “thermodynamic” force acting on each particle. 
This force may be identified with the change in Gibbs free energy G of the 
suspension due to the addition of the particle. It follows from the expression for 
chemical potential (Eq. 3.3.8),  equal to the Gibbs free energy per mole, that 

Fther,,, = -VG = kTV In n (5.2.16) 

where we have made the dilute suspension assumption and replaced the activity 
by the particle concentration. This statement is equivalent to the particle 
distribution satisfying the equilibrium Boltzmann relation. 

Substituting the thermodynamic force for the hydrodynamic force in Eq. 
(5.2.15), we obtain the translational diffusion coefficient 
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kT 
D = Y -  

f 
(5.2.17) 

Similarly it can be shown, with fror the mean rotational friction coefficient, that 
the rotational diffusion coefficient is 

kT 
D =r ro t  Lo, 

(5.2.18) 

These fundamental relations were originally obtained by Einstein. 
A standard alternative approach to evaluating the Brownian diffusion 

coefficients is to employ the Langevin equation (Chandrasekhar 1943, Batchelor 
1976, Russel et a]. 1989). Here, it is supposed that the "force" acting on a 
single isolated particle, say in translational motion, is a combination of a force 
G ( t )  characterizing the very rapid motions associated with the molecular motion 
time scale s for water) plus a frictional drag force F associated with the 
much slower fluid response to the particle motion. The Langevin equation of 
motion for the single particle is then 

d2r 
m - = G ( t )  - F 

dt2 

with F given by Eq. (5.2.13), 

d 2 r  - d r  
dt  dt 

m = G ( t )  - f (  -) 

(5.2.19) 

(5.2.20) 

Equation (5.2.20) cannot be used directly for evaluating the mean square 
displacement since the mean values of the velocity and acceleration are zero. We 
therefore take the scalar product of r with this equation and transform it to the 
squares of these quantities: 

(5.2.21) 

For a large number of 
obtain 

particles, averaging all of the terms in this expression, we 

(5.2.22) 

Here, the term ( r  * G )  has been dropped as negligibly small because of the small 
time of fluctuations in the force G ( t ) ,  and m ( ( d r l d t ) 2 )  has been set equal to 
3kT.  

Integrating Eq. (5.2.22) once gives 

(5.2.23) 
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with to the time from which the particle displacement is measured. The 
characteristic time to attain the constant asymptotic value 6kT/( representative 
of the “mean” motion, is approximately the viscous relaxation time mlf: This 
time is about 2 x lO-’s for a 1 - p m  radius particle ( p  = l o3  kgm-3) .  The 
diffusivity ( r ’ )  / 6 t  = kT/E derived by Einstein from random walk considera- 
tions and equilibrium thermodynamics, is therefore reached very rapidly. Thus 
for time intervals large compared with m/( the motion of a Brownian particle 
can be considered one of random walk governed by the diffusion equation. 

From D = kT/( the translational diffusion coefficient for a sphere is 

kT D = -  
6 r p a  

(5.2.24) 

This is commonly referred to as the Stokes-Einstein equation. The correspond- 
ing rotational diffusion coefficient is 

(5.2.25) 

where, as noted above, D,,, has the dimensions of inverse time. 
In 1908 and subsequent years, J.B. Perrin (1923) reported consistent 

values of Avogadro’s number N, based on the Stokes-Einstein equation and 
experiment. Perrin determined experimentally values of ( r’ ) for different 
colloidal particle sizes, temperatures, and liquid solutions, and substituted the 
measured values into the formula 

(5.2.26) 

This formula follows from the Stokes-Einstein equation, the relation ( r ’ )  = 
6 D t ,  and the definition N, = R l k .  

Perrin’s experiments consisted of microscopic measurements of the ob- 
served displacements in a fixed time of spherical particles whose radii were 
determined microscopically. Actually, Perrin projected his two-dimensional 
planar observations onto a straight line giving the Brownian motion in one 
direction, and the projections were then squared and averaged. For this one- 
dimensional case, Eq. (5.2.26) would be divided by 3 (because one is looking at 
a single degree of freedom rather than three degrees of freedom). 

In concluding this section, we remind the reader of the brief discussion of 
flexible macromolecules given in the Introduction. In a fluid at  rest such a 
macromolecule will continuously change its configuration due to forces associ- 
ated with Brownian motion. As a result, geometric properties such as the 
end-to-end distance and radius of gyration will fluctuate rapidly with time. As 
with free-particle Brownian motion, however, what is of interest are not the 
instantaneous values but the time-average values of the squares of these 
quantities. In a state of flow hydrodynamic forces will also affect the configura- 
tion. The analysis of the behavior of randomly coiled macromolecules modeled, 
for example, as a necklace of beads connected by frictionless springs is discussed 
in Section 9.2. 
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5.3 Viscosity of Dilute Suspensions 

In this section we examine the flow of a suspension of particles, particularly the 
apparent viscosity coefficient of the suspension. Our interest is in calculating the 
convective mass flux of a suspension as distinct from the diffusive flux of 
Brownian motion. As previously, we shall assume a very dilute suspension in 
which each particle behaves as if  it were in a liquid of infinite extent. To 
simplify the calculation, we neglect Brownian motion, although, as we discuss 
later, in the very dilute limit considered and for spherical particles it has no 
effect on the suspension viscosity. 

As previously, the particles are supposed sufficiently small that the effects 
of gravity are negligible, and they are in inertia free flow in the surrounding 
liquid so that they move locally with the ambient flow. Again, however, the 
particle size is large compared with the molecular dimensions of the liquid, so it 
may be regarded as a continuum. The presence of the particles in the flowing 
liquid will disturb the particle-free flow. The nature of this hydrodynamic 
interaction problem has been briefly indicated in discussing model polymer 
niolecules made up of monomer units that interact hydrodynamically. The 
difficulty in taking this interaction into account is a consequence of the particles' 
long-range influence, for an isolated particle will generate a velocity that decays 
very slowly ( v -  ' ) .  This introduces some mathematical difficulties, since the 
superposition of these disturbances will lead to a divergent sum at large 
distances (see Batchelor 1972 for handling such divergences). 

I t  is evident that by adding particles in a flow the amount of energy 
dissipated will be increased, since the work done by the shearing stresses is 
increased because of the addition of the solid boundaries associated with the 
particles. The particles plus liquid, which we term the suspension phase, might 
therefore be looked upon as a Newtonian fluid but with a coefficient of viscosity 
larger than that of the pure liquid. To understand the relation between the 
particle and fluid characteristics, Einstein (1956) set himself thc problem of a 
dilute suspension in a simple Couette flow viscometer and asked what would be 
the measured viscosity. 

For a Couette flow (Fig. 2.2.1) the velocity distribution is linear and, in 
rectangular Cartesian coordinates, may be written 

u = y y  v = o  w = o  (5.3.1) 

where y is the shear rate: 

(5.3.2) 

Here h is the plate spacing, and U is the velocity of the upper plate. The shear is 

(5.3.3) 

and the corresponding energy dissipation per unit volume is 
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du u 2  p L h  ( ) 
Y 

(5.3.4) 

Unfortunately, with particles present in the liquid the mathematical problem 
is considerably more difficult than the usual simple Couette flow results would 
lead one to believe, principally because the liquid flow must now be calculated 
with the complicated set of boundary conditions determined by the surfaces of 
the particles. As defined, the problem is to calculate the additional flow brought 
about by the presence of all the particles contained in the suspension undergoing 
a shearing action. This is made simpler by the assumption of a very dilute 
suspension. In this case the perturbation in the shear flow brought about by a 
single particle can be calculated and the total perturbation for a uniform 
distribution of particles determined by integrating the component perturbations 
from all of them. 

To further simplify the problem, we assume the particles are spherical and 
rigid. The new fluid velocity is obtained by integrating the Stokes equations with 
boundary conditions of no-slip at the sphere and undisturbed flow far from it. 
To satisfy the boundary conditions, we must know the motion assumed by the 
sphere in the shear flow. The particle is regarded as having a velocity of 
translation, say uo, equal to the velocity of the undisturbed fluid at  the point 
occupied by the center of the sphere. With respect to coordinate axes attached 
to the particle and moving with velocity uo, the velocity components will again 
be given by Eq. (5.3.1), and by symmetry there is no tendency for the sphere to 
translate (Fig. 5.3.1).  The sphere will, however, rotate at  the local angular 
velocity of the fluid. One of the better-known results from fluid mechanics is 
that  the vorticity is twice the mean angular velocity of a fluid particle. I t  follows 
that a small spherical particle must rotate around the z axis with an angular 
velocity j / 2 .  Using the fact that the mean angular velocity is defined by 

(5.3.5) 

Figure 5.3.1 
velocity of undisturbed fluid at center of sphere. 

Translational motion with respect to coordinate axes translating with 
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we have that the velocity of a point on the sphere surface is 

* = f r y  u = - - I ' x  ' y  w = o  (5.3.6) 

Now the introduction of the sphere has disturbed the flow, and the new 
components of the velocity will be 

ti + u', u' ,  w' (5 .3 .7 )  

with the primes denoting the perturbation components. From the above defini- 
tion and Eq. (5.3.6) the values of the perturbation components a t  the sphere 
surface are defined by the condition u - n = 0. Detailed analysis shows that the 
components of the perturbation flow satisfying the equations and boundary 
conditions are (Einstein 1956, Sadron 1953) 

u )  = -- 5 ____ a 3 j x y 2  + - 1 r u 5 ( 9  - -) 15xy' 

2 r5 6 r7  

(5.3.8 a) 

(5.3.8 b) 

(5.3.8 c) 

where a is the sphere radius and r is the radial spherical coordinate. 
The first terms in Eqs. (5.3.8) are of the order a3r-', the second ones of the 

order a'r-". With (alr)' <. 1, which will generally be true, the second terms in 
Eq. (5.3.8) can be neglected and 

(5.3.9 a) 

(5.3.9b) 

( 5.3.9c) 

This approximate additional flow is radial (partly inward, partly outward) with 
a dipole character near the surface (Fig. 5.3.2). The absolute value of the 
velocity has a maximum along directions making angles of 45" and 135" with 
the x axis. In a given direction the additional velocity decreases as 1/r2.  Its 
magnitude is proportional to the volume of the particle and to the rate of shear 
(Sadron 1953).  

With the above solution for the additional flow produced by a single 
particle, the total perturbation can now be calculated for a dilute suspension in 
shear flow. The calculation was first made by Einstein, and we follow an 
approach given by J.M. Burgers as outlined by Sadron (1953).  In  this approach 
the apparent, or effective, viscosity is found from the shearing stress on the 
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Y 

Figure 5.3.2 Perturbation flow according to Eq. (5.3.9) (Sadron 195'3). 

walls. The undisturbed flow of the pure liquid before introducing the spheres is 
given by Eq. (5.3.1) with the shear rate denoted by yo to indicate the 
undisturbed flow. 

Consider two planes in the shear flow with coordinates y, and -yz (Fig. 
5.3.3). The undisturbed velocities in these planes are u l  = -&yl and u2 = - q 0 y 2 ,  
respectively. It is now assumed that n particles per unit volume are added to the 
liquid to form a dilute suspension. In the suspension consider a layer parallel to 
xz,  with ordinate y ( y2 < y < y l )  and thickness dy .  Let x,, y, z ,  be the 
coordinates of the center of a sphere in this layer. The perturbation flow due to 

T' 

Figure 5.3.3 Geometry for shear flow of a dilute suspension. 
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the sphere is given by Eq. (5.3.9), and at  the point A ,  shown in Fig. 5.3.3 
( x  = 0, y l ,  z = 0 )  its x component is 

5 .  3 2 Y 1 - Y  
2 7s 

u: = --  'You x ,  (5.3.10) 

2 2  2 2  where rs  = x ,  + ( y 1  - y )  + z , .  
The additional flow produced by n d x ,  d y  dz ,  particles contained in an 

element of volume around the point x,, y ,  z ,  has x component u:n d x ,  d y  dz, .  
This component produces a retardation of the flow, and the retardation in 
velocity due to all the particles contained in the layer of thickness d y  is 

32 

(5.3.1 1) 

The value of the integral is f n( y 1  - y) - ' ,  whence 

A u ,  = - fnyou3n d y  (5.3.12) 

This retardation in velocity is independent of y and of the position of the point 
A in the plane y = y l .  

Similarly, the retardation at  the plane y 2  is 

Au,  = + fnyou3n d y  (5.3.13) 

so the relative horizontal velocity of the flow in the planes y = y 1  and y = - y 2 ,  
which in the absence of particles was equal to yo( y1 + y 2 ) ,  is now decreased by 
the amount 

(5.3.14) A u l p 2  = - A u ,  + Au2 = ?nyoan 3 d y  

Adding up the effects of all layers from - y z  to + y l ,  we readily find that 
the relative horizontal velocity of the two planes is 

241-2 = j o ( y 1  + y 2 ) ( 1 -  97ru3n) (5.3.15) 

But the volume of each spherical particle is $nu3,  and the particle number 
density n times this volume is just the volume fraction of the spheres in the fluid. 
Denoting this volume fraction by 4, we may rewrite Eq. (5.3.15) in the form 

u1-2 = ?"(Yl + Y 2 ) ( 1  - 2.54)  (5.3.16) 

The additional shear stress T I  on the plane y = y 1  can now be calculated 
from 

(5.3.17) 
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where M' and u '  are the components of additional flow produced by the spheres 
of all layers together. But M' and u '  are independent of x, so d u ' l d x '  is 
identically zero. The additional shear at  y = y ,  produced by a single sphere at 
(xs, y ,  z ,)  obtained by differentiating Eq. (5.3.10) is 

(5.3.18) 

Integrating over all the spheres of the same layer and then over all the layers, we 
see that the resultant value vanishes. Therefore, the shear stress at the planes 
y = y 1  and y = - y r  is the same as before the introduction of the particles, and 
the only effect of the perturbation flow from all the particles is to produce a 
decrease of the relative horizontal velocity in these planes. 

Let us now take the planes y 1  and - y z  to be the walls of the Couette 
viscometer so that y 1  + y z  = h and U is the relative velocity of the walls. When 
the viscometer is filled with pure liquid, the shear stress T,, is given by pU0/h ,  
the subscript 0 referring to the particle-free state. However, with particles in the 
fluid the planes move with the new relative velocity 

U = byo( 1 - 2.54)  = U,( 1 - 2 . 5 4 )  (5.3.19) 

But by definition the shear stress at the wall is 

u uo 
T = 77 - = q  - (1 - 2.54)  

h h 
(5.3.20) 

where 77 is the apparent viscosity or effective viscosity. However, T = T,, so 

p, 2 U = q  - uo (1 -2 .54 )  
h h 

(5.3.2 1) 

or 

p = v( 1 - 2.54)  (5.3.22) 

The volume fraction of particles is small because the solution is very dilute, 
so we may expand (1 - 2.54)- '  and write 

(5.3.23) 77, = - = 1 + 2.54 

where 77, is the relative viscosity. This is the much heralded formula obtained by 
Einstein for the viscosity of a dilute suspension. It has been widely verified 
experimentally (Hiemenz 1986). The Einstein formula is usually held to be valid 
for volume fractions 4 < 0.02 of suspensions of particles that can be approxi- 
mated by hard spheres, although it is frequently applied up to 4 - 0.1. 

An analogous result was subsequently obtained by Taylor (1932) for fluid 
drops having an internal viscosity p,,, different from p, and held spherical by 
surface tension. In this case the formula for the relative viscosity is 

77 
p, 
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(5.3.24) 

so for a gas the factor 2.5 in Einstein’s equation is replaced by 1. 
Einstein’s result is remarkable, since it says that for uniform shear the 

relative viscosity does not depend on the size or size distribution of the spheres 
but only on the volume fraction, provided the solution is very dilute. A physical 
explanation for this follows from the diluteness criterion, which may be restated 
as the interparticle distance being large enough that the motion of any particle is 
unaffected by that of any neighboring particles. As a result, the increased energy 
dissipation arising from the presence of the particles must be proportional to the 
particle number density. Therefore the relative viscosity is simply linear in the 
particle volume fraction. 

One effect neglected in the calculation is the interaction of the particles 
with the wall; however, this can be shown to be negligible, provided a / h  < 1. A 
second neglected effect is Brownian motion, which introduces a diffusive flux in 
addition to the convective viscous flux. So long as the solution is very dilute and 
the dispersed particles are rigid spheres, the Brownian motion will not alter the 
mean angular velocity j / 2 ,  and the Einstein result is unchanged. Although the 
translational Brownian motion does act on the particle microstructure in trying 
to uniformize the relative positions of the particles, the relative viscosity is 
unaffected, since any particle is still unaware of any other particle. The 
rotational Brownian motion plays no role because of the isotropic behavior of 
the spherical particles. 

If the particles are not spherical, even in the very dilute limit where the 
translational Brownian motion would still be unimportant, rotational Brownian 
motion would come into play. This is a consequence of the fact that the 
rotational motion imparts to the particles a random orientation distribution, 
whereas in shear-dominated flows nonspherical particles tend toward preferred 
orientations. Since the excess energy dissipation by an individual anisotropic 
particle depends on its orientation with respect to the flow field, the suspension 
viscosity must be affected by the relative importance of rotational Brownian 
forces to viscous forces, although it should still vary linearly with particle 
volume fraction. 

A measure of the importance of Brownian motion is given by the ratio of 
the Brownian diffusion time to the convection time. The diffusion time may be 
interpreted as the time taken for a particle to diffuse a distance equal to its 
radius, which is the characteristic time given by the reciprocal of D,,,. This time 
characterizes the time taken for the restoration of the equilibrium micro- 
structure from a disturbance caused, for example, by viscous convection. The 
characteristic convection time is simply given by the reciprocal of the shear rate. 
We denote the ratio of these two times by the Peclet number symbol, since they 
measure viscous convection to Brownian diffusion, and we write 

(5.3.25) 
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5.4 Sedimentation under Gravity 

In this section we examine small particles, either solid or fluid, falling (or rising) 
freely under gravity in a liquid. When the particles are falling, the process is 
termed sedimentation, and when particles are rising, Potation. In the former 
case the particle density is greater than that of the liquid, and in the latter case it 
is less. We shall generally be concerned with sedimentation, which is used for 
the separation of dispersed particles from the carrier liquid, for the separation of 
polydisperse particles in solution according to their size, and for the de- 
termination of particle mass. The particle mass is assumed large enough that 
mass diffusion may be neglected. 

For a particle falling freely under gravity, the net force acting on the 
particle is the difference between the gravitational force and buoyancy force. In 
Cartesian tensor notation the net force can be written 

(5.4.1) 

where p = particle density 
pfl = fluid density 
V = particle volume 

The details of the particle shape are irrelevant, and it does not matter whether 
the particle continuously turns over and changes in orientation relative to the 
direction of gravity or whether it moves on a path that is not vertical. For p > pr, 
the force will pull the particle down (sedimentation), and for p < pf, the particle 
will move up (flotation). 

As the particle velocity in a free-fall (or rise) increases, the viscous drag 
opposing the motion will also increase. For small particles, a steady terminal fall 
speed is reached very rapidly, in a time of the order of the viscous relaxation 
time. For a sphere of radius a this time is about a2/v  for a density difference of 
O(1). If the suspending liquid is water, v = m2 sC1, so even for 100-pm 
particles this time is exceedingly short. With small particles the Reynolds 
numbers are generally sufficiently small that we may neglect inertia and, from 
Eq. (.5.1.3), write for the steady drag force acting on the particle 

(5.4.2) 

Here, U ,  is the terminal velocity and f;, is the translational friction tensor; that is, 
the force depends on the orientation for a particle of arbitrary shape. 

With (F,),,, = -(F,)",ac, 

or  

(5.4.3) 

(5.4.4) 
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where m is the particle mass. When the translational friction tensor can be 
replaced by a mean value it follows from Eq. (5.4.4) that the viscous 
relaxation time m/f  for the particle can be determined from a measurement of 
its fall speed. Note that m alone cannot be determined. This situation is 
comparable to the classical experiment of J.J. Thomson in which the charge-to- 
mass ratio of an electron could be determined, but neither by itself. 

For a sphere the translational friction coefficient is independent of orienta- 
tion, and the viscous drag force for a rigid particle of radius a is given by Stokes' 
drag law, Eq. (5.1.5), with the result 

(5.4.5) 

or 

(5.4.6) 

This shows that the terminal velocity decreases as the square of the decrease in 
particle size and linearly with a decrease in the density difference. The corre- 
sponding Reynolds number based on the particle radius is 

(5.4.7) 

For a density ratio of 2 the Reynolds number will be less than 1 for spherical 
particles with radii less than about 75 p m .  We are therefore generally justified 
in neglecting inertia effects for the particle range of interest. 

For a liquid drop held spherical by surface tension, the terminal speed 
from Eq. (5.1.4) is given by 

(5.4.8) 

where p,,, is the viscosity of the fluid sphere. The result of Eq. (5.4.6) is 
recovered with p.,,,/p -+ 00. For a rising spherical gas bubble, where pJp -+ 0 
and p /pS  -+ 0, the flotation terminal speed is simply fa'glv. 

Let us consider now a container with an initially homogeneous suspension 
of particles denser than the liquid with no specification at  this stage on the 
degree of diluteness (Fig. 5.4.1A). If allowed to stand, the particles will settle to 
the bottom of the container, and at some later time a discrete boundary will be 
seen separating clarified liquid at  the top from the suspension (Fig. 5.4.1B). This 
boundary will be moving downward. A second discrete boundary will be seen 
separating the sedimented particles at the bottom from the suspension, and this 
boundary will be moving upward. After a long enough time all the particles will 
have sedimented, and an equilibrium state will be reached, as shown in Fig. 
5.4.1C. 
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Initial 
state 

(A) 

intermediate 
state 

(6) 

Figure 5.4.1 Batch sedimentation. 

Final T 
state 

(C) 

The discontinuities diagrammed in Fig. 5.4.1 are termed kinematic shocks 
in that they represent discontinuities in density. Let us calculate the speed at 
which the top discontinuity moves down and the bottom one up. For specificity 
consider a downward-moving shock. With respect to a coordinate system 
moving down with the speed of the discontinuity u (Fig. 5.4.2A), the flow is 
steady and conservation of mass for the one-dimensional picture considered 
gives 

Here, p is the particle concentration, with the subscript 1 denoting conditions 
above the discontinuity, and 2 denoting those below. The speed of the shock is 
therefore 

. .  
u = -  1 2  - 1 1  

P2 - P1 
(5.4.10) 

where j is the particle flux passing downward by gravity alone. 
In the case of a dilute suspension U ,  = U ,  = U,, where U ,  is the infinitely 

dilute suspension, particle fall speed, which for the case of rigid spheres is given 

I. 
(A) (6) 

Figure 5.4.2 
batch sedimentation. 

(A) Kinematic shock; (B) boundary conditions for kinematic shocks in 
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by Eq. (5.4.6). If we denote the downward speed of the discontinuity at the top 
of the container by urOp, with the boundary condition pI = 0 for the clarified 
layer a t  the top of the container (Fig. S.4.2B) and with p2 = po, where p,, is the 
dilute suspension concentration, it follows from Eq. (5.4.9) or (5.4.10) that 

Utop = UO (5.4.11) 

Thus the discontinuity speed is the fall speed of the particles, which is physically 
evident, since all the particles a t  the topmost layer will be sedimenting with the 
speed U,. 

The corresponding upward speed of the discontinuity front from the 
bottom is obtained from the conditions that p1 = po and pz = p,,, where p,, is the 
maximum concentration of the particles in the sedimented layer. The boundary 
condition at  the bottom is that j ,  = 0, since there is no flux of the sedimented 
layer, whence 

- 0 - Po uo 
Ubor  = 

P,, - Po 
(5.4.12) 

The negative sign on ubot indicates upward movement, the convention having 
been adopted that velocities are positive in the direction of g. We may therefore 
write 

(5.4.13) 

In other words, the speed with which the front moves up from the bottom is 
approximately the density ratio of the sedimenting to sedimented particles 
( ~ ~ ) / p , ~ , )  multiplied by the dilute particle fall speed. 

We can conveniently diagram the interface positions in the position-time 
( x - t )  diagram of Fig. 5.4.3, since 

(5.4.14a) - 
x t o p  - 'top' 

xbor  = - 'bott ( S .4.14 b) 

The time 7 at which equilibrium is reached is given by equating Eqs. (5.4.14), 
from which 

The corresponding height of the sedimented layer is 

(5.4.15) 

(5.4.16) 
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p = o  

Time, t 

Figure 5.4.3 
infinitely dilute suspension. 

Interface positions as a function of time in batch sedimentation of an 

In the x- t  diagram of Fig. 5.4.3, below ABC the concentration has its maximum 
value p,,,, above OBC it is zero, and in the region OBA it is po. 

The above equations can be used to deduce the properties of the suspen- 
sion from observations of the front speeds, typically the one separating the 
clarified layer from the suspension. For example, knowing the fall speed (Eq. 
5.4.6), we can determine the effective particle size if the particle density has 
been found independently. The extension of the results to infinitely dilute 
systems containing particles of two or more sizes (polydisperse systems) is 
straightforward and will not be discussed further here. It may only be men- 
tioned that with different fall speeds there will be as many distinct downward- 
moving fronts as there are particle sizes. From measurements of these front 
speeds the particle sizes can be determined as for the monodisperse system. 

Of interest in gravity sedimentation is what takes place when the con- 
centration of particles is large enough that the particles no longer settle as 
individual entities. This is termed hindered settling, and for monodisperse 
spherical particles the hindered settling regime usually obtains for volume 
fractions 4 > 0.15. In hindered settling the particles tend to descend as a whole, 
with fall velocity 

where U, is the terminal fall velocity of an isolated particle (Eq. 5.4.6) and the 
function G ( 4 )  is a positive quantity less than unity, termed the hindered settling 
factor. Physically this relation states that a sedimenting particle experiences a 
retardation in velocity arising from the presence of the other particles and that 
this retardation is dependent only on the local particle concentration. 

Two approaches have been offered to explain this hindered settling 
behavior (Mandersloot et al. 1986, Davis & Acrivos 1985). In one, the 
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suspension is modeled as a porous medium made up of individual particles in 
which the drag around a spherical particle is corrected for the presence of the 
rest of the suspension. We shall discuss this approach in Section 8.5 in 
connection with filtration and drag models of porous media. In the other 
approach, the velocity retardation is attributed to an apparent increase in the 
effective viscosity of the suspension, as did Einstein for a dilute suspension in a 
uniform shear flow. Related physical arguments for characterizing the viscosity 
of concentrated suspensions in shear flows are discussed in Chapter 9. 

A qualitative argument for the retardation (Mandersloot et al. 1986) is 
that the settling of the particles causes an upward return flow that has a mean 
cross-sectional area available to it proportional to 1 - 4. The relative velocity of 
the return flow is therefore increased as (1 - 4) - ’ ,  whence the particle drag is 
increased as 1 - 4. There is also a buoyancy effect related to the suspension 
density p,,, = (1 - + ) p a  + +p, which is proportional to 1 - 4. As a conse- 
quence, there is a total retardation on the suspension from the two effects that is 
proportional to ( 1  - 4)’. This argument does not pretend to take into account 
the suspension microstructure, which is known to be important. 

A commonly used empirical function for G(4 ) ,  representative of the 
behavior of hindered settling data over a wide range of concentrations, is 
generally expressed in the form 

(5.4.18) 

where n = 4.7, when wall effects may be neglected. This type of relation is often 
referred to as the Richardson-Zaki correlation. 

Kynch (1952), in his treatment of sedimenting systems, employed the 
general expression of Eq. (5.4.17). The consequence of this assumption is that 
the settling process is determined entirely from a continuity equation without 
the need to know the details of the forces acting on the particles; that is, the 
problem is purely kinematic. 

Following Kynch, we ask, what would be the consequences of a con- 
centration-dependent fall speed on the batch settling of a suspension? With 
hindered settling the downward movement of particles will cause the particle 
density to increase at  the bottom of the container, and this concentration change 
must propagate itself upward because the particles entering the higher-density 
region settle slower. The adjustment in concentration can be described as a 
series of small discontinuities in density propagated through the fluid. These 
discontinuities are termed kinematic waves. We have previously introduced the 
concept of a kinematic shock wave, the speed of which is given by Eq. (5.4.10). 
However, if instead of a finite change in particle concentration we consider only 
an infinitesimal change appropriate to a continuously varying density function, 
then the speed u of a kinematic discontinuity propagating upward is given from 
the limit of Eq. (5.4.10) as 

di u ( p )  = - - 
dP 

(5.4.19) 
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with j the downward particle flux. This is then the velocity of a discontinuity 
between concentrations p and p + dp. Since j ( p )  is usually nonlinear, con- 
centration waves can propagate at  different speeds and can interact to form 
kinematic shocks. 

Equation (5.4.19) can be interpreted by noting that in an x- t  diagram a 
line of constant density will describe the motion of a boundary between a 
suspension of density p and one of p + dp. Now the line of constant density is 
defined by 

(5.4.20) 

This line is termed a characteristic, which is a line in the x-t plane on which an 
ordinary differential equation may be written, in this case dp = 0. From Eqs. 
(5.4.19), (5.4.20), and the mass conservation relation dpldt = - d j / d x ,  it 
follows that the slope of the upward-propagating characteristic curve, or 
characteristic speed, is 

(5.4.21) 

Because p is constant along the characteristic curve (the kinematic wave), u is 
also constant along the curve, and the characteristic must be a straight line. 
Therefore, on an x-t diagram one such line passes through every point in the 
diagram below the top of the dispersion, and in a region where the density is 
continuous the lines (kinematic waves) do  not intersect. 

For batch sedimentation with an initially uniform suspension and hindered 
settling, a typical but not unique behavior is shown in the x-t diagram of Fig. 
5.4.4. The characteristic lines along which p and u are constant are drawn 
dashed. In the region O B A  the concentration is po just as in Fig. 5.4.3, and the 
fall curve is a straight line as there. However, at  point B the changes propagated 
from the bottom have just reached the discontinuity surface and the con- 
centration begins to increase. In the region ABC the concentration varies from 
po to the maximum settled value p,, which is its value in the region below ACD. 
Above OBCD, which is the clarified region, the concentration is everywhere 
zero. 

A problem of some practical importance that arises in connection with 
clarifier-thickener systems, in which continuously sedimented material is con- 
tinuously withdrawn, is to deduce the behavior of the flux j as a function of p 
with hindered settling. For example, with reference to Fig. 5.4.4, the con- 
centration change that is shown there as being brought about by upward- 
propagating waves (characteristics) is only true if the flux-density dependence is 
such that u = - dj ldp > 0. 

To illustrate how the j-p curve is deduced from a batch settling experi- 
ment, suppose, for example, that a fall curve of the form of OBC in Fig. 5.4.4 is 
measured. Now the equation of the characteristics in the region ABC is 

x = H - u ( p ) t  (5.4.22) 
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Time, t 

Figure 5.4.4 
hindered settling of the suspension. 

Interface positions as a function of time in batch sedimentation with 

The terminal points P of these characteristics are at  the portion of the fall curve 
BC. The speed of fall of the upper discontinuity surface is that of the particles in 
the topmost layer, whence along BC, 

(5.4.23) 

Now i f  m, is the original mass of the particles per unit cross-sectional area, then 
after a time t the amount of mass that will have crossed the discontinuity surface 
will be 

If U and u are eliminated by using Eqs. (5.4.22) and (5.4.23), 

(5.4.25) 

From the x-t observations of the fall curve and knowing the initial mass of 
particles enables us to calculate p = p ( x ,  t )  and, from Eq. (5.4.23), U ( p ) .  With 
the data so obtained, we can plot a curve of j = p U ( p )  versus p .  A typical 
behavior for hindered settling is shown in Fig. 5.4.5. Note that the initially 
dilute system settles most rapidly, but in the hindered settling regime, as the 
concentration increases, the settling velocity decreases and approaches zero at  
very high concentrations. Thus the flux is zero at high and low concentrations 
and is highest at  intermediate concentrations; that is, since the gravitational 
settling velocity declines with p ,  then p U (  p )  passes through a local maximum. 
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Suspended particle density, p 

Figure 5.4.5 Flux curve for batch sedimentation with hindered settling. 

As we have observed, and as discussed in Kynch’s paper, for a constant- 
density characteristic to propagate upward, u = - dj idp has to be greater than 
zero, a condition that will not obtain for all G ( 4 )  and all p. Putting j = 
U , p G ( + )  and with p proportional to 4, to have u > 0 requires 

Consider the simplest j ( p )  curve that is everywhere concave downward 
(Fig. 5.4.6); that is, the curve has a maximum and no point of inflection. Since 
Eq. (5.4.26) is equivalent to djldp < 0, there will be no upward propagation of 
density increase until the density reaches p,. Thus if  the density on the bottom 
starts out at, say, p1 (Fig. 5.4.6), a concentrated layer will build up on the 

Suspended particle density, p 

Figure 5.4.6 
point for batch sedimentation with hindered settling. 

Simple concave downward flux curve with a maximum and no inflection 
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bottom until the density reaches p,,,. Only then will the characteristics propagate 
upward. Other behaviors are discussed in Kynch for various j-p curves. 

For a kinematic shock to be stable, its velocity must be intermediate to the 
upstream and downstream velocities; that is, 

(5.4.27) 

This statement implies that characteristic lines terminate in a stable shock, as in 
the example of Fig. 5.4.4, but never emanate from one. 

An interesting situation arises if it is desired to avoid the upward propaga- 
tion of kinematic waves by moving the sediment downward at  a rate such that 
the upward-propagating concentration differences are stationary relative to the 
container walls. The downward motion of the sediment is obtained by its 
continuous withdrawal uniformly over the settler cross section. The process is 
termed continuous thickening. The continuous sedimentation process is thus 
composed of the batch gravitational flux and solid convective flux pus .  This is 
illustrated in Fig. 5.4.7, where the total solids flux curve j,,, is the sum of the 
batch flux and the convective flux; the shape of the curve of Fig. 5.4.5 illustrates 
the batch flux (Petty 1975). 

The total flux-density curve is seen to have a local maximum denoted by 
the subscript “max” and a local minimum denoted by the subscript “lim.” 

T 

Suspended particle density, p 

Flux curves in continuous sedimentation. Figure 5.4.7 
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Detailed analysis shows that there are two possible types of steady-state 
solutions. The first is where j , , ,  < jlin,. The second is where j,,, > j , , ,  > j,,,,,, for 
which there appear to be three possible solutions for p. However, the only 
steady one is that for which j , , ,  = j , , , ,  p = plim corresponding to a characteristic 
speed aj,,,lap = 0. As with everything said here and in connection with the 
Kynch analysis, compressibility of the sediment is not taken into account (Lev et 
al. 1986). 

Finally, we make mention of a settling method that employs the fact that 
particles when settling in an inclined tube do so faster than i f  the tube is vertical. 
This effect is termed the Boycott effect, after the physician A.E. Boycott, who in 
1920 made this observation in connection with the sedimentation of blood cells 
in a tube. A picture of batch sedimentation in an inclined channel is shown in 
Fig. 5.4.8. The clarified liquid, suspension, and sediment are modeled as three 
distinct regions separated by kinematic shocks, as in vertical settling. 

Most early observations of sedimentation in inclined channels indicated 
that a quasi-steady interface shape between the clarified layer and suspension 
was formed rapidly in times short compared with the characteristic suspension 
settling time. Moreover, the clarified liquid layer thickness below the upper 
channel wall was observed to be much thinner than the channel width b. Most 
of the clarified fluid accumulated above the horizontal interface at  the top of the 
suspension. It was this kinematic shock interface that was observed to fall with 
a vertical velocity larger than the hindered settling velocity U measured in 
vertical settlers. 

Figure 5.4.8 Batch sedimentation in inclined channel. 
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5.5 

Kinematic models of this phenomenon supposed the rise due to buoyancy 
of the less dense clarified liquid to be balanced by the fall of the more dense 
suspension. With most of the clarified liquid assumed to accumulate above the 
suspension, it is a simple matter to estimate the rate of production of clarified 
fluid. This rate is obtained by setting the interface fall rate multiplied by the 
horizontal projection of the channel cross-sectional area equal to the vertical 
settling velocity of the particles multiplied by the sum of the horizontal 
projection of the area of the channel end plus the horizontal projection of the 
area of the lower channel wall. The result is 

(5.4.28) 

where 8 is the inclination angle of the channel with respect to the horizontal, 
and H ( t )  is the interface height diagrammed in Fig. 5.4.8. The enhanced 
sedimentation rate was thus seen as a consequence of the fact that the particles 
could settle not only on the bottom but also on the lower channel wall of the 
inclined channel. The term (Hlb)cos 8 is the increase in the settling rate over 
that for vertical settling and represents the contribution to the clarified liquid of 
the ascending liquid under the upper channel wall. The given relation clearly 
shows the augmentation in settling rate that can be achieved by decreasing the 
channel spacing b. 

More recently a number of detailed laminar dynamic analyses have been 
made of the flow in inclined channels with sedimentation. In these studies the 
flow is assumed to remain stable. Reference to them, along with historical 
background on settling in inclined channels, may be found in Davis & Acrivos 
(1985).  The volumetric flow rate (blsin B)(dHldt), as given from Eq. (5.4.28), 
is found to be generally satisfactory, though when the clarified layer occupies an 
appreciable portion of the channel the simple kinematically derived relation 
overestimates the fall speed dHld t .  

I t  is of interest that in the continuous operation of inclined settlers, termed 
lamella settlers, where the sediment is withdrawn continuously from the bottom 
of the channel and clarified product continuously from the top of the channel, 
that two modes of operation have been shown to exist for the same rate of 
clarified flow (Probstein et al. 1981, Leung & Probstein 1983). In one mode the 
feed suspension layer expands down the channel (szrbcritical mode), as in Fig. 
5.4.8, whereas in the other mode (supercritical mode) the layer contracts. The 
appearance of one mode or the other depends on the geometry and the manner 
in which the suspension is fed into the settler and the clarified liquid withdrawn. 
We would suggest that under appropriate conditions there exist two types of 
steady solutions for all continuous sedimentation processes. 

Sedimentation in a Centrifugal Field 

In the last section it was assumed that the particles were sufficiently large that 
diffusion was negligible and sedimentation occurred with a sharp boundary. If 
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the particles were very small, diffusion, which is inversely proportional to the 
particle mass, would dominate and no distinct boundary would be formed. 
Moreover, since the settling speed decreases as the square of the particle 
dimension for particles less than about 1 p m ,  it is not realistic to employ only 
gravitational force to bring about sedimentation because of the slow settling 
rate. 

For the separation of macromolecules, such as proteins and nucleic aids, 
the forces can be increased appreciably by subjecting the particles to an angular 
rotation to produce a large radial force. The magnitude of this centrifugal force 
is mrw’, with r the distance from the axis of rotation, m the particle or molecule 
mass, and w the angular speed of rotation. Because the particle is subjected to a 
continuously increasing force as its distance from the axis of rotation increases, 
it never reaches a true “terminal speed.” This results in a constant drift velocity. 
In centrifugation the term “sedimentation” refers to this migration of the 
particles radially from (or toward) the axis of rotation. The resulting diffusional 
flux is the pressure diffusion mentioned in Section 2.4. 

Under the assumption that the fluid is in solid body rotation, then in a 
reference frame rotating at  the speed of rotation, the fluid is at  rest. If the 
particles move circumferentially with the fluid, and gravity neglected, then in the 
rotating frame the only force acting on the particles is the centrifugal force, 
which acts as an effective centrifugal “gravity.” Therefore a particle is pulled 
radially outward if it is denser than the fluid or radially inward if it is less dense. 
For the small particles of interest in dilute solution, we may to good approxi- 
mation apply the Stokes-type drag relation at any given radial distance. The 
same argument as applied to the derivation of the terminal settling speed for 
gravitational acceleration can be used for centrifugal acceleration. If we assume 
a mean friction coefficient the drift velocity of the particles in the direction of 
increasing radial distance, U, ,  is given from a balance between the force due to 
centrifugal acceleration and the drag force as 

(5.5.1) 

where pfI is the fluid solvent density and p is the solute particle density. 
In the biological literature the particle or molecular solute density is often 

approximated by the reciprocal of the solute particle partial specific volume 
V = dV/dm, which is exact for very dilute systems. In addition, because the 
velocity of the molecule is proportional to the magnitude of the centrifugal field, 
it is common to discuss sedimentation properties in terms of the velocity per 
unit field (essentially mobility): 

( 5 . 5 . 2 )  

where the sedimentation coefficients is independent of the rotation frequency of 
the centrifuge. The units of s are seconds, although measurements of s are 
frequently expressed in svedbergs (1 S = s) named after the Nobel prize 
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winner T. Svedberg, the inventor of the ultracentrifuge. This unit is not accepted 
in SI. Typical values of s in molecular ultracentrifugations range from 1 to 
100 s. 

Our  interest here is largely in molecular and small particle separations, so 
the discussion that follows will center on ultracentrifuges as distinct from 
ordinary bowl or disk centrifuges used for continuous large particle separation. 
The ultracentrifuge is distinguished by very high accelerations. Moreover, they 
are almost always used in a batch mode, so our considerations will emphasize 
this type of operation. However, the importance of understanding the hydro- 
dynamically more complex continuous mode should be borne in mind, par- 
ticularly as it relates to future design. Modern ultracentrifuges operate at  speeds 
up to 70,000 rpm (7300 rad s-’)  with accelerations up to 600,000 g’s. 

There are two principal types of ultracentrifuges, analytical and prepara- 
tive. The former are equipped with optical systems that send light through the 
sample parallel to the rotation axis to determine concentration or concentration 
gradient distributions at  any time during the measurement. In preparative 
centrifuges the contents are spun for a fixed time period and then removed from 
the centrifuge (fractionated), the purpose being to prepare or purify biological 
cells and macromolecules. Samples are held in tubes or sector-shaped “cells.” 
Because of the high rotor speeds, the chamber in which the rotor spins is under 
high vacuum to minimize frictional heating. For balance the motor drive shaft is 
flexible so that the rotor can spin about an axis through its center. Figure 5.5.1 

Scanning 
- -- - - - - {TI photomultiplier 

1 
Recorder/Processor 

Figure 5.5.1 Schematic of a modern analytical ultracentrifuge with scanning absorption 
optical system. [After Cantor, C.R. & Schimmel, P.R. 1980. Biophysical Chemistry. Part 
11: Techniques for the Study of Biological Structure and Function. San Francisco: W.H. 
Freeman. Copyright 0 1980 W.H. Freeman and Company. With permission.] 
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is a schematic of a modern analytical ultracentrifuge with a scanning absorption 
optical system. 

m3 (5 to 
100 mL) are used, whereas in analytical centrifuges the sample that is spun in 
the rotor and monitored is quite small (lo-'  to m3 or 0.1 to 1 mL). In 
preparative centrifuges the sample cells are cylindrical tubes. On the other hand, 
in analytical centrifuges the cell is sector-shaped when viewed parallel to the 
axis of rotation (Fig. 5.5 .2) .  The reason for this design is that in a rectangular 
cell (equivalent to the cylindrical tubes used in preparative centrifuges), many 
particles would interact with the side walls since the motion of the sedimenting 
particles is principally in radial paths. The particles could remain on the side 
walls or ultimately pile up and settle downward, resulting in mixing. In the 
sector-shaped cell the solute moves unhindered along radial paths in the 
direction of the local centrifugal force. Were the cell to diverge more sharply 
than a sector, the compensating solvent flow from right to left, caused by the 
sedimenting solute movement from left right, will interact with the cell walls 

In preparative centrifuges sample volumes of 5 x to 
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Figure 5.5.2 Sector-shaped ultracentrifuge cell. 
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and cause stirring. The interaction of either particles or flow in the region of the 
side walls is further complicated by the presence of boundary layer shear regions 
there (Greenspan & Ungarish 1 9 8 5 ) .  

Because we are considering sedimentation of macromolecules as well as 
colloidal particles, in analyzing the kinematic wave fronts that will develop in 
the cell, we must also consider the broadening of these fronts that takes place 
due to diffusion. The geometry for analysis of a sector-shaped ultracentrifuge 
cell is shown in Fig. 5.5.2. The solvent-air interface (the meniscus) is located a t  

The solvent is assumed to be in solid body rotation at  an angular speed w, 
and the solute is assumed to move circumferentially with the solvent. A single 
solute is considered, that is, a binary mixture, and a cylindrical coordinate 
system rotating with the angular speed w is adopted. The solute concentration is 
then a function only of the time t and radial distance r from the rotation axis. 
The continuity (diffusion) equation (Eq. 3.3.15) can therefore be written 

and the bottom of the cell a t  rb’ 

( 5 . 5 . 3 )  

In Eq. (5.5.3) the radial velocity has been replaced by the sedimentation 
coefficient s, from the definition of Eq. (5.5.2). The fluid dynamicist should be 
aware that this one-dimensional diffusion equation is known in the ultracen- 
trifuge literature as the Lamm equation (Fujita 1975). In the limit of infinitely 
dilute solutions D and s are independent of concentration and may be taken out 
of the derivative to give 

(5.5.4) 

Assuming initially a uniform mixture in the cell with a solute con- 
centration po, we have the initial condition 

p = po r,,, < r < rb t = 0 (5.5.5) 

The boundary conditions at the meniscus and cell bottom are from the 
condition of no flux across these interfaces: 

(5.5.6a) 

(5.5.6 b) 

provided r, ,  # 0 and rb # m. 

In the limit where diffusion may be neglected, the sedimentation behavior 
is similar in many (but not all) respects to the gravity sedimentation discussed in 
the last section. There will be a sharp kinematic shock wave that propagates 
through the fluid, separating the clarified liquid (pure solvent) from the mixture 
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of initially uniform particle (solute) concentration. There also will be a wave 
moving back into the mixture, which separates the sedimented material that 
accumulates at  the bottom of the cell from the suspension layer. An important 
difference from gravity sedimentation is that the particle concentration in the 
mixture layer does not remain constant at its initial value but decreases with 
time. This happens because of a volume increase that results from the area of 
the cell cross section increasing linearly with the radius and also because the 
mixture zone thickness increases due to the axial acceleration increasing linearly 
with radius. The resultant decrease in solute concentration with time is termed 
radial dilution. This effect considerably complicates the simple one-dimensional 
wave picture presented for gravity sedimentation. 

There is another complicating factor pointed out by Greenspan (1983).  It 
has been assumed that the solute particles move circumferentially with the fluid 
in solid body rotation. However, this is not true in a settling process where there 
is a lighter clarified solvent and a heavier dense suspension phase separated by a 
kinematic shock wave. In the separation process the heavier particles move 
outward, increasing their radial distance so that by conservation of angular 
momentum they must have a reduced rotational speed. Through drag inter- 
action the reduced rotational speed is transmitted to the suspending solvent, 
with the consequence that there is a retrograde motion of the heavier phase with 
respect to the rotating wall. 

Conversely, there is a compensating solvent flow inward, and again, since 
angular momentum must be conserved, the angular speed of this fluid must be 
increased. This increase will be transmitted to the clarified solvent, resulting in a 
prograde motion of the lighter phase with respect to the rotating wall. The 
retrograde motion generally dominates. We mention that by using vorticity 
arguments instead of momentum considerations, Greenspan (1988)  has shown 
that a negative relative vorticity, equivalent to the retrograde rotation, is always 
produced in the separation process. 

The “slip” effect we have described is important in continuous centrifuge 
operation, but will not be considered further here. The interested reader is 
referred to Greenspan & Ungarish (1985). 

Let us first consider particles sufficiently large that diffusion may be 
neglected. For hindered settling the assumption corresponding to Kynch’s model 
that the fall speed depends only on the particle concentration is that 5 = s (p ) .  
With these approximations Eq. (5.5.3) reduces to a first-order partial differen- 
tial equation, which may be written 

( 5 . 5 . 7 )  

Since the equation is of first order in Y, both boundary conditions of Eq. (5 .5 .6 )  
cannot be satisfied. However, for dilute solutions we may neglect the accumu- 
lated material a t  the bottom of the cell and apply the initial condition (Eq. 
5.5.5) and only the boundary condition Eq. (5.5.6a) to the description of the 
solvent-mixture interface motion and time dependence of the concentration 
distribution. 
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As in the gravity sedimentation problem, characteristic solutions also exist 
for nondiffusive sedimentation in an ultracentrifuge. We recall the definition of a 
characteristic as a line in the distance-time plane, here the r-t plane, on which an 
ordinary differential equation may be written. Such an equation must be 
expressed as a relation connecting total differentials in which partial derivatives 
d o  not appear. Since we wish to obtain relations involving total differentials, we 
write 

JP 2 dt  + - dr = dp 
dt  dr 

(5.5.8) 

Equation (5.5.7) is the second equation connecting the partial derivatives dpldt 
and dp ld r .  Since the characteristic equation must be independent of these 
derivatives, the determinant of the coefficients of the partial derivatives in the 
two equations must vanish; that is, 

Expanding the determinant gives 

- _  dr 2 d s p  - rw 
d t  dP 

(5.5.9) 

(5.5.10) 

This equation defines the characteristic speed, that is, the kinematic wave speed. 
Note that for s = constant the characteristic speed dr /d t  = U,. which is ana- 
logous to the wave speed in the gravity sedimentation problem except 
that here U ,  is not constant with distance. The analogy also holds with s = s( p )  
if s - ' d ( s p ) / d p  is defined as a hindered settling factor G(+) (Eq. 5.4.18). 

Since Eqs. (5.5.7) and (5.5.8) are not homogeneous in the partial derivatives, 
another condition must be satisfied in order for the solutions to exist. This 
condition is that the partial derivatives be indeterminate (that is, on a charac- 
teristic rlpidr and d p l d t  may be discontinuous) so that 

(5.5.1 1) 

We therefore may write along the characteristic that 

dp + 2w2sp dt  = 0 (5.5.12) 

where the solute concentration is not constant but is a decreasing function of 
time. 

An explicit integral can be obtained for the characteristic equations (Fujita 
197.5). We shall write it only for an infinitely dilute mixture where s = so = 
constant. The solutions of Eqs. (5.5.10) and (5.5.12) are 
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( 5  3.13 a) p = ce 

p r 2  = d (5.5.13 b) 

where c and d are integration constants. The general solution is therefore 

where g is a function of the argument indicated, which is defined by the initial 
and boundary conditions. 

Applying the initial condition Eq. (5.5.5) and boundary condition, Eq. 
(5.5.6a) with D = 0, we obtain the solution 

The solute concentration thus decays to zero exponentially with time. These 
expressions define a concentration distribution that is represented by a step 
function, that is, a kinematic shock, where the shock interface r :k( t )  moves 
toward the cell bottom following 

(5.5.16) S O W Z t  r > $ ( t )  = r,,e 

As in gravity sedimentation, the shock arises from the boundary condition 
requiring the particles at  the clarified solvent-mixture interface to sediment with 
the speed U,. The solution behavior is illustrated in Fig. 5.5.3, where the 
mixture-sediment shock interface has also been sketched in. 

Equation (5.5.16) may also be written 

(5.5.17) 

to 
Po , 

P 
tl 

Shock 
interfaces 

rnl ‘*h) r* (t?) 

Figure 5.5.3 Solute concentration profiles during ultracentrifugation without diffusion. 
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which shows that a plot of In Y : ?  against W 2 t  gives a straight line of slope so. In 
this way so can be determined by measuring the motion of the interface 
boundary Y:> as a function of time. 

Combining Eqs. (5.5.16) and (5.5.15b) shows that 

2 

2 
P YIl*  

Po Y : >  

_ -  _ -  (5.5.18) 

That is, the solute concentration is diluted inversely as the square of the radial 
distance from the rotor axis of the solvent-mixture interface. In other words, 
p r  2 = constant, which is called the square-dilution rule of the sector-shaped cell. 

The solution behavior with a concentration-dependent sedimentation co- 
efficient that decreases with increasing p (hindered settling) has a similar form as 
for s = constant, but with Eq. (5.5.15b) replaced by 

(5.5.19) 2 =2s,w t r ; : . ( t ) < r s r b  t > O  

The interface radial distance r ,?(t) satisfies the square-dilution rule (Fujita 1975). 
The discussion to this point has centered on the limiting case D = 0. In 

many instances this limit may not be realistic for macromolecules. With D > 0, 
diffusion will cause a broadening of the shock interfaces, which will increase 
with time, as sketched in Fig. 5.5.4. Also shown there is the concentration 
gradient d p  / d r ,  which is what is commonly measured in an ultracentrifuge with 
a schlieren optical system. Actually, what is measured with a schlieren system is 
the gradient of refractive index, which can then be converted to d p l d r  when the 
solution is binary. 

An exact analytic solution to the diffusion equation with constant D and 5 
was given in 1938 by W.J. Archibald for the problem posed (Fujita 1975). 
However, it is sufficiently complex that its use in application to sedimentation 
experiments is difficult. To simplify the form of the solution, H. FaxCn, as far 
back as 1929, had introduced the approximation of considering the sector cell 
to be infinitely extended, corresponding to rb -+ w. We shall outline the solution 
procedure for that case (Fujita 1975). 

The diffusion equation can be thrown into a simpler form by using 
transformed variables suggested by the nondiffusive solution Eqs. (5.5.15b) and 
(5.5.18). In particular, introducing the reduced dependent variable 

P 2sw2r  

PO 
n = - e  

with s = constant, and reduced independent variables 

(5.5.20a) 

(5.5.20b) 

transforms the diffusion equation (5.5.4) to 
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r, rb 

r 

Figure 5.5.4 Solute concentration and concentration gradient profiles during ultracen- 
trifugation of a homogeneous macromolecule with a finite diffusivity. Time scale roughly 
t ,  = 3600 s, t ,  = 7200 s for a large protein at  5200 rad s.-' (-50,000 rpm). [After Cantor, 
C.R. & Schimmel, P.R. 1980. Biophysical Chemistry. Part 11: Techniques for the Study 
of Biological Structure and Function. San Francisco: W.H. Freeman. Copyright 0 1980 
W.H. Freeman and Company. With permission.] 

Here, the Peclet number is defined by 

(5.5.21) 

(5.5.22) 

where the definition s = U , / w 2 r  has been used. 
The initial condition, Eq. (5.5.5), becomes 

r ~ = l  O < t < m  r=O (5.5.23 a) 

where we have let y b  + 03 in accordance with Faxkn's cell model. The boundary 
condition at  the meniscus, Eq. 5.5.6a, is 

1 dr 
Pe d[ 

r= - -  [ = O  r>O (5.5.23 b) 

This boundary condition is the same one met earlier in our analysis of the 
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problem o f  reverse osmosis in a channel (Eq. 4.4.9b). Note that the boundary 
condition at  r h  has been dropped and is replaced by the requirement that T be 
finite in the semi-infinite domain ( = O+ m. 

If we restrict the solution to values of Y close to r,, that is, to the air-liquid 
meniscus, where it might be expected to be most accurate and which is actually 
appropriate to ultracentrifuge cells, then e-' -- 1 and 

(5.5.24) 

This equation is readily integrated in closed form, although we shall not write 
the solution. We only note that even though it is not necessary to impose any 
restriction on the value of Pe, it is physically necessary that Pe P 1; otherwise the 
effects of diffusion near the cell bottom will extend to the solution region, and 
the infinite cell approximation will be invalidated. Typical values of Pe for 
ultracentrifugation of macromolecular solutes range from 10' to l o 3 .  

Since the solution is restricted to values close to the meniscus, this limits it 
to the early stages of sedimentation and hence small times. The measure of small 
times is given by the Strouhal number (Eq. 3.5.12), which for the problem at 
hand is defined by 

(5.5.25) 

Small times imply St 91, and for typical values of s for macromolecules of 
to lo-" s and with w - 5200 rad s- '  (-50,000 rpm) this parameter will 

generally be large for sedimentation times measured in hours. 
The solution behavior is as shown in Fig. 5.5.4. An important result is that 

the maximum of the concentration gradient curve follows Eq. (5.5.17). This 
provides a means of evaluating the sedimentation coefficient s as in the absence 
of diffusion. The diffusion coefficient itself may be determined from matching 
the measurements to the theoretical solution. 

For a dilute suspension we may use Eq. (5.5.2) and the Einstein relation 
D = k T / f  to write 

where pi,  is the solvent density. This assumes that the friction coefficients 
affecting diffusion and sedimentation are the same. With m = M / N , ,  where M 
is the molar mass and R = N , k ,  Eq. (5.5.26) may be rewritten as 

(5.5.27) 

Equation (5.5.27) is known as the Svedberg equation. If the partial specific 
volume of the molecules have been measured, the Svedberg equation provides a 
means of determining the molar mass by using the results for s and D derived 
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from sedimentation measurements. Of course, f could be estimated from the 
theoretical solutions discussed earlier, in which case it would not be necessary to 
determine D. Evidently a number of alternatives are possible. 

Keep in mind that the solutions discussed did not consider viscous effects 
at the walls and interfaces or  the retrograde and prograde rotations of the 
mixture and clarified fluid, respectively. In most instances of batch separation it 
is not necessary to consider these effects, although they must generally be taken 
into account for continuous separations (Greenspan & Ungarish 1985). 

Before concluding this discussion, we mention another ultracentrifuge 
technique, density-gradient centrifugation. An advantage of this technique can 
be seen by considering it in conjunction with a procedure used for the 
separation by ultracentrifugation of a mixture of several components into 
discrete bands. In this procedure, referred to as zonal sedimentation (Cantor & 
Schimmel 1980), a thin band of a mixture of macromolecular components is 
layered on top of a large volume of solvent and ultracentrifuged (Fig. 5.5.5). 
This causes the components to separate into bands of pure components, each 
traveling at its characteristic sedimentation speed, with diffusion broadening the 
bands into roughly Gaussian shapes. The problem with the procedure is that in 
a homogeneous solution the density of the sample would be higher in the band 
than in the solution below it, and because of gravitational instability, which is 
magnified by the high g forces in the centrifuge, the bands would collapse. 

To eliminate the problem of band collapse, one creates, in one version of 
density-gradient centrifugation, a stabilizing gradient in density in the solvent by 
means of an “inert” small molecule, typically a salt, which is added in dilute 
solution to the original mixture. At equilibrium a continuous increase of salt 
density is obtained in the direction of increasing centrifugal force. Now if the 
densities of the macromolecular components lie between the density extremes at 
the top and bottom of the cell, then the bands will come to equilibrium at 

Macromolecules and 
salt solution Macromolecules 

Before layering After layering After extended 
centrifugation 

Figure 5.5.5 Schematic of zonal sedimentation in presence of stabilizing density gra- 
dient (density-gradient centrifugation). [After Cantor, C.R. & Schimmel, P.R. 1980. 
Biophysical Chemistry. Part il: Techniques for the Study of Biological Structure and 
Function. San Francisco: W.H. Freeman. Copyright 0 1980 W.H. Freeman and Com- 
pany. With permission.] 
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different positions along the cell (Fig. 5.5.5). The Watson-Crick hypothesis- 
that one strand of each daughter DNA molecule is newly synthesized, whereas 
the other is derived from the parent DNA molecules-was shown experimental- 
ly by Meselson & Stahl (1958) by labeling DNA molecules with two different 
isotopes of nitrogen and separating them with density-gradient centrifugation. 

Ultrafiltration 

Ultrafiltration, like reverse osmosis, is a pressure-driven membrane separation 
process. The applied pressures usually range from about 7 X lo4 to 7 x 10’ Pa, 
and the solvent, most often water, passes through the membrane. Material that 
does not pass through the membrane includes particulate matter, colloids, 
suspensions, and dissolved macromolecules of molecular weight generally great- 
er than 10,000 and often greater than 2000. Rejection is usually close to 
complete. 

From a theoretical point of view, ultrafiltration is like ordinary filtration 
except that very small particles are held back by the membrane. The size of the 
rejected particles depends on the pore size of the membrane. The most common 
ultrafiltration membranes are of the asymmetric type described in Section 4.4 
for reverse osmosis. Practical ultrafiltration rates are in the range of 7 to 
35 x m s-l, which is about 1 /200  of the usual practical filtration rates. 

For small applied pressures the solvent flux through the membrane is 
proportional to the applied pressure. However, as the pressure is increased 
further, the flux begins to drop below that which would result from a linear 
flux-pressure behavior (Fig. 5.6.1). For macromolecular solutes this nonlinear 
behavior may be ascribed to concentration polarization, that is, the buildup of 
rejected solute a t  the membrane surface. This buildup increases the local 
osmotic pressure and leads to a lower effective driving pressure and, hence, 
lower flux, as was shown for reverse osmosis. For macromolecular solutes the 

aJ I 

B 
b 
E 
a 

v ~ , , ~  (Governed by flaw 
velocity and internal 
channel design) 

Applied pressure 

Figure 5.6.1 Schematic of an ultrafiltration flux-pressure excursion curve. 
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osmotic pressure may have a strong nonlinear dependence on solute con- 
centration, so the osmotic pressure effects can be quite significant when 
compared with reverse osmosis where the solute diffusivities are 10 to 100 times 
larger. For particulates and undissolved species the observed flux behavior will 
be similar due to an apparent fouling of the membrane, although any analysis is 
considerably more complicated. 

For macromolecular solutes at  sufficiently high pressures, a limiting flux is 
reached where any further pressure increase no longer results in an increase in 
flux (Fig. 5.6.1). Two explanations have been offered. One put forward by 
Michaels (1968) is that the accumulated solute at  the surface reaches a 
concentration where gelation begins to form a gel layer that offers limiting 
hydrodynamical resistance, which is large in comparison with the membrane 
resistance. Thereafter the limiting flux ceases to become pressure dependent and 
becomes flow, or  mass transfer, dependent. Any increase in pressure will cause a 
transient increase in flux, which results in more solute transport to the mem- 
brane. However, since the gel concentration cannot increase, the back diffusive 
transport away from the membrane is unchanged. Hence, the accumulation of 
solute a t  the membrane will just thicken the gel layer and increase the resistance 
to flow until the flux is reduced to its former value. Applying Darcy's law (Eq. 
4.7.7) for the limiting flux through the gel layer gives 

(5.6.1) 

where k ,  is the gel permeability and S,  is the gel layer thickness. The quantity 
G,/k,is the hydrodynamic resistance of the gel layer, and, as stated, any increase 
in pressure merely results in a corresponding increase in gel layer thickness, so 
the flux remains essentially independent of pressure. Note that the membrane 
constant A' defined in Eq. (4.4.4) would in this case be kglpSg. The concept of 
polymer gelation in which the solute reaches its solubility limit is not always 
appropriate since a true gel that has a sharp phase boundary and no fluidity may 
simply not be formed. A highly concentrated macromolecular solution ex- 
hibiting similar properties might be more representative in some cases. 

A second explanation for a pressure-independent permeate rate could be a 
strong osmotic pressure dependence on concentration with the osmotic pressure 
approaching the applied pressure. This description is viable only where the 
osmotic pressure has meaning. In a system in which solidlike particulates 
coalesce, the osmotic pressure model would not be a good one. 

Both the concentration polarization and osmotic pressure descriptions can 
be applied to polymer solutions that form well-defined gels a t  high con- 
centrations. In a gel the thermodynamic osmotic pressure results from the 
solvent-mediated interactions between the randomly moving gel monomers, and 
this pressure tends to swell the gel. Both descriptions have been calculated in 
some detail for gelling macromolecular solutions and shown to produce similar 
behaviors (Probstein et al. 1979, Trettin and Doshi 1981). Actually a relatively 
simple argument shows that the two approaches are equivalent if the diffusion 



156 Solutions of Uncharged Macromolecules and Particles 

coefficient for concentration polarization is appropriately defined in terms of the 
gel permeability and gel osmotic pressure. 

To determine the value of the diffusivity that connects the two approaches, 
we follow Einstein’s thermodynamic arguments given in Section 5.2 for evaluat- 
ing the translational Brownian diffusion coefficient. The basis for this is the 
random Brownian motion of the monomer units in the gel, which translates into 
the gel osmotic pressure. If, as above, the flow through the gel is assumed to 
follow Darcy’s law (Eq. 4.7.7), then we may write the applied hydrodynamic 
force per mole of solution flowing through the gel as 

(5.6.2) 

Here, Vp has been replaced by F/T0,,, where V,,,,, is the solution volume, and 
the force has been divided by the number of moles of solution, so csOl,, is the 
molar concentration of the solution. Here, k ,  is the gel permeability and p is the 
solution viscosity, not to be confused with chemical potential. This equation is 
equivalent to the Stokes-type drag law used by Einstein (Eq. 5.2.13). 

From the equilibrium balance of the convective and diffusive fluxes, 

-DV7r=c - u (3 (5.6.3) 

where c is the molar concentration of solute, 7~ is the osmotic pressure, and Vc 
ha5 been replaced by V.rr(dcld.rr), the osmotic pressure at  constant temperature 
and pressure being assumed to be a function of the solute concentration only. 
This can be shown to be a consequence of the Gibbs-Duhem equation C ntW1 = 

0, where n, is the number of moles of species i and p, is the corresponding 
chemical potential. 

Lastly, to ensure equilibrium we assume, following Einstein, that the 
hydrodynamic force is balanced by a “thermodynamic” force that is identified 
with the change in chemical potential. In terms of osmotic pressure this change 
in chemical potential can be shown from thermodynamic arguments to be given 
by 

where vsc,iv = dV/dn,,,, is the partial molar volume of the solvent and nrolv is the 
numbers of moles of solvent. 

Equating the forces and assuming a moderately dilute solution with the 
partial molar volume of the solvent replaced by V/nsnlv, we obtain 

(5.6.5) 

This relation may be interpreted as another form of the Stokes-Einstein equa- 
tion. I t  was obtained in a different manner by Wijmans et al. (1985) in the 
dilute limit, where the term C I C , , , ~  did not appear. The importance of the 
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expression is that it shows the equivalency of the gel polarization and osmotic 
pressure approaches with the appropriate definition of the diffusivity. We note 
that a more general related treatment of Brownian diffusion with hydrodynamic 
interaction may be found in Batchelor (1976, 1983). 

To illustrate the behavior of the ultrafiltration flux, we here adopt 
Michaels' model of gel layer formation. As was done for reverse osmosis, let us 
again consider the geometry of a two-dimensional parallel plate channel with 
fully developed flow. Moreover, to simplify the presentation, we examine on ly  
the limiting-flux problem. 

In Michaels' analysis he determined the limiting flux by assuming a steady, 
one-dimensional thin-film mass transfer model (Nernst layer) in which stream- 
wise convection parallel to the membrane surface is neglected. Assuming the 
solute to be completely rejected and balancing the limiting convective solute flux 
against the back diffusion from the solute concentration gradient normal to the 
surface, we write 

For a constant diffusion coefficient Eq. (5.6.6) can be 
film (diffusion layer) of thickness 6, to give Michaels' 

(5.6.6) 

integrated over the thin 
result 

(5.6.7) 

Here, co is the bulk feed concentration and cg is the solute gelling concentration, 
which is identified with the wall concentration. 

We can use the channel flow solution for constant wall concentration 
derived in Section 4.3 to estimate the diffusion layer thickness 6,, since a t  the 
wall ( y = 0 )  the concentration is constant at  the gel value cg. In particular, from 
Eq. (4.3.18), 

s, = 1 . 4 7 4  y) 2hDx " 3  

where h = channel half-width 
U =  mean flow velocity 
x = distance along channel measured from the entrance 

The average limiting flux over a length of membrane L is 

(5.6.8) 

(5.6.9) 

Substituting 6, into Eq. (5.6.7) and integrating according to Eq. (5.6.9) gives 

(5.6.10) 
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5.7 

From the above result it can be seen that the gel concentration is a 
quantity that can be determined by extrapolating data for the limiting flux as a 
function of bulk concentration to zero values of the flux with all other 
parameters held fixed. The basis of the extrapolation is that complete gelation of 
the bulk fluid by definition reduces the flux to zero. To evaluate the gelation 
concentration a t  the membrane surface from experiments at  finite fluxes, 
observe from Eq. (5.6.10) that 

(5.6.11) 

where Q is the volume flow rate. If this functional relationship is correct, the 
limiting flux when plotted against bulk concentration should be linear on a 
semilog plot. Straight-line extrapolation of the flux data to zero flux then 
determines the gelation concentration. 

Although the parametric dependences of Eq. (5.6.10) have been found to 
agree with experiment, the quantitative predictions are somewhat less satisfac- 
tory. However, these differences can in large measure be accounted for by the 
variable diffusivity in the concentration polarization layer that is associated with 
the much higher solute concentration there. From the physical nature of the 
problem it is evident that the critical region for mass transfer is near the surface. 
This has been verified by an integral solution of the convective diffusion 
equation with variable diffusivity, which yielded the same form of result as Eq. 
(5.6.10) but with the diffusivity evaluated a t  the gel concentration. This 
modification has provided much better quantitative agreement with macro- 
molecule ultrafiltration data. Moreover, it has enabled the diffusivity at the 
gelling concentration to be determined from ultrafiltration flux measurements 
(Probstein et al. 1979).  

Hydrodynamic Chromatography 

Hydrodynamic chromatography is a size exclusion chromatographic procedure 
used for the size analysis of submicrometer colloidal particles (McHugh 1989). 
The method is a variation on the molecular fractionation procedure of gel 
chromatography in which the separation columns are packed with non-porous 
beads such as styrene-divinylbenzene or glass, rather than porous gels or resins. 
The largest application of the technique is in the sizing of polymer latexes (Fig. 
1.3.4). To illustrate the discussion that follows, neutrally buoyant, force-free 
spherical particles are examined with nonhydrodynamic surface forces such as 
charge not considered. 

Characterizing the porous bed by means of a capillary model of the 
interstitial space, the physical basis of the size separation procedure can be 
demonstrated through examination of the convection and Brownian diffusion of 
the colloidal particles in a liquid flow through a circular capillary. Figure 5.7.1 
shows two freely-rotating spherical Brownian particles of different size sampling 
a nonuniform Poiseuille flow. The center of the larger particle in its travel 
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Figure 5.7.1 
circular capillary. 

Convection and diffusion of spherical Brownian particles through a 

through the tube samples a smaller volume than does that of the smaller particle 
because a particle center is unable to approach the tube wall closer than a 
distance equal to its radius. Thus, the larger a particle, the larger is the volume 
that is inaccessible. This argument is not modified by the fact that in actuality 
the particles are always separated from the wall by a thin fluid layer associated 
with the motion relative to the tube wall of the particles in proximity to the tube 
wall. The closest approach of a particle center to the wall is therefore a distance 
somewhat greater than the particle radius. 

Because the smaller particle can approach closer to the tube wall, it is able 
to sample velocities lower than the larger particle and can therefore be expected 
to have a lower mean speed through the capillary. Moreover, because of the 
particles’ excluded volume, both must have on average a velocity greater than 
the mean fluid velocity, although the velocity of the larger particle will be 
greater than that of the smaller one. It follows that particles will be eluted from 
the capillary in order of decreasing size. 

The picture described is that of convective-diffusion of finite size spherical 
Brownian particles through a circular capillary. In consequence, this may be 
looked upon as a generalizaton of the Taylor problem for point size particles 
(Brenner & Edwards 1993). A detailed analysis of this problem based on 
Brenner’s moment analysis method has been carried out by Brenner & Gaydos 
(1977), taking into account the tube wall effects on the motions of the particles. 
Neglecting wall interactions, the essential element of the chromatographic 
technique can be illustrated by a simple calculation for the average velocity of a 
particle. 

From the Taylor-Aris formulation for times t 9  a2/D, where a is the 
capillary radius and D the Stokes-Einstein diffusion coefficient of the particle, 
the particle of radius a, will have had sufficient time to sample the full velocity 
profile. With the local particle velocity taken to be equal to that of the fluid (Eq. 
4.2.14), the average particle velocity over the tube cross-section U, is given by 

(5.7.1) 

where U is the mean fluid velocity. O n  integrating, the expression for U ,  can be 
written 

U p  = U ( l  + 2A - A’) (5.7.2) 
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where A = a,/a. For point size particles, A = 0 and Up = U ,  while in the limit of 
particles of size equal to the tube radius, A = 1 and Up = 2U,  with the increase in 
Up monotonic in the particle radius. This demonstrates that the average speed of 
all finite size particles is greater than the mean fluid speed and that the particles 
are eluted in order of decreasing size. 

A well known result from the theory of inertia free flows is that the effect 
of the tube wall on  the particle motion through a capillary is to slow the particle 
down relative to  the fluid in the neighborhood of the wall. The  mean particle 
velocity given by Eq. (5.7.2) must therefore be too  large. From their moment 
analysis, Brenner & Gaydos found for small values of A that  to terms of lowest 
order in A 

U p =  U [ 1  + 2 A - A 2 t - . 3 . 9 h 2 +  O(A3)] (5.7.3) 

The first three terms are the Poiseuille flow contribution, with the additional 
terms representing the wall effect. In agreement with the physical picture, Eq. 
(5.7.3) shows the wall effect not to be of leading order, at  least for small A. 

The  corresponding modification to the Taylor dispersion coefficient, which 
takes into account both the excluded volume and  wall effects, is given by 

[l - 1.9A + 9.7A2 + O (  A ' ) ]  
a 2 U 2  

Deff = 480 (5.7.4) 

The  finite particle size thus reduces the dispersivity in comparison with the 
Taylor value. The smaller dispersion coefficient results from the excluded 
volume which does not allow the particle center to sample the region of highest 
velocity gradient near the wall, thereby reducing the mean radial diffusion and 
hence dispersivity. Unlike with the mean particle velocity, the wall effects enter 
to first order in A, and  reduce the values of all the numerical coefficients of the A 
terms in comparison with the values obtained by only accounting for the 
excluded volume effect. 
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Problems 

5.1 Show that a long slender axisymmetric body falling in a highly viscous 
fluid a t  constant speed can never fall along a path inclined at more than 
19.5" and  that this occurs when the axis of the body lies a t  an  angle to the 
vertical given by c o s - ' ( l / f l ) .  Suggest how you might employ this fall 
behavior of long thin bodies for particle characterization when Brownian 
motions can be neglected. 
To estimate the effect of concentration diffusion, one  often uses the 
relation t,,,, - L 2 / D  t o  estimate the diffusion time, where D is the 
diffusion coefficient and L is a characteristic diffusion length. Note  that 
there is no concentration term in this equation. However, if there is no 
concentration gradient, there should not be a diffusive flux and t,,,, should 
approach infinity while D and L are finite. What  is the source of this 
contradiction? 

5.2 
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5.3 a. Show analytically that in a dilute solution of spherical particles being 
sheared, the shear stress a t  any plane is unaffected by the presence of 
the particles, so the only effect of the perturbation flow caused by the 
particles is to decrease the relative horizontal velocity in these planes. 
Knowing the result that the decrease in relative horizontal velocity due 
to a single plane of particles is independent of the coordinates x,  y, z ,  
show what the modified velocity profile would look like if all the 
particles in the flow were assumed to form an infinite slab of thickness 
A somewhere in the middle of the bounded shear layer. What 
would the decrease in relative velocity be a function of in this simple 
picture? 
Using the simple model of an altered shear velocity profile due to the 
introduction of an infinite slab of thickness A ,  show that for small 
particle volume fractions this leads to a functional form for the 
relative viscosity 7 = 1 + B 4 ,  where B is a constant and 4 is the 
particle volume fraction, which may be taken to be proportional to the 
slab thickness. 

The increased viscosity in a shear flow due to the introduction of particles 
can be associated with the increased energy dissipation due to the intro- 
duced solid boundaries. For a dilute solution the total dissipation with the 
particles present can be taken to be the energy dissipation per unit time 
without the particles plus the power dissipation associated with rotating 
the particles relative to the flow. From this and the fact that for a small 
volume fraction of spherical particles the perturbation velocity induced by 
a particle is u'- a3yjlr2, where a is the particle radius, Y is the radial 
distance, and i/ is the applied shear rate, show that the functional form for 
the relative viscosity is given by 7 = 1 + B+, where B is a constant and 4 is 
the particle volume fraction. 
Consider the batch sedimentation of a mixture of particles of two different 
characteristic sizes but the same density and configuration (concentrations 
p A  and p s ) .  Assume that both size particles pack to a concentration p,,. 
a. Derive the speeds of the kinematic shock fronts if the solution is very 

dilute. 
b. Sketch the sedimentation x-t diagram. 
c. Determine the times and sedimentation layer heights a t  which the 

speed of the sedimentation layer front is discontinuous, in terms of the 
initial mixture height H and the front speeds found in part a. 

A dilute binary mixture is ultracentrifuged at an angular speed w in a 
sector-shaped cell. The mixture in the cell is initially uniform with a solute 
concentration po. 
a. Neglecting all particle interactions and wall effects, obtain an expres- 

sion for the steady-state solute concentration distribution in terms of 
the sedimentation coefficient s, diffusivity D, meniscus radius Y , , ~ ,  cell 
bottom radius r b ,  and po and o. This state is referred to as sedi- 
mentation equilibrium. 
What does the expression for the concentration distribution reduce to 
if  rh - rrll < r,? 

b. 

c. 

5.4 

5.5 

5.6 

b. 
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c. Rigorously speaking, it takes an infinite time for a mixture to reach 
sedimentation equilibrium; however, estimate the times in practice at 
which equilibrium would be attained if the column length r b  - T , ~  

relative to r ,  is 
The osmotic pressure difference of macromolecular solutions relative to 
the pure solvent can be represented approximately by AT = acn, where c is 
the molar concentration, n >I,  and a is a constant. This solution is 
ultrafiltered across a membrane with complete solute rejection. The per- 
meate flux in terms of the applied pressure difference and osmotic pressure 
difference is assumed to be given by Eq. (4.4.2). 
a. Show that the macromolecular solution exhibits a “limiting-flux-type’’ 

behavior at  high osmotic pressure by assuming the applicability of a 
steady, thin-film model in which streamwise convection is neglected 
and by obtaining an expression for the change in solvent flux with 
respect to the change in applied pressure difference across the mem- 
brane. 

b. Obtain an expression for the limiting permeate flux as a function of 
the applied pressure difference and the bulk solute concentration. 

The problem is to determine the effect of the excluded volume of particles 
of radius up on the Taylor dispersion coefficient (Eq. 4.6.27). In so doing, 
note that in the dispersion coefficient, a should be replaced by a - up ,  and 
U should not represent the average translational speed but rather the 
magnitude of the difference between the largest and smallest velocities in 
the flow field. The largest particle velocity remains equal to the centerline 
solvent velocity u,,,,,, but due to the excluded volume, the smallest velocity 
is not zero but is the value of the solvent velocity u’ at a distance a, from 
the wall. This represents a reduction in the velocity difference and, 
therefore, in the dispersion coefficient. Accordingly, U should be multi- 
plied by ( t imax  - M ’ )  lumnx.  Based on these arguments, show that the 
excluded volume correction to the Taylor dispersion coefficient is 1 - 
6A + 15A2 + O( A 3 ) ,  where A = a,/a. 

s = s, and w = 1000 and 5000 rad s-’. 
5.7 

5.8 



7 Solutions of Charged 
Macromolecules and Particles 

7.1 The Charge of Macromolecules and Particles 

In this chapter we consider the motion of charged macromolecules or particles 
through a solvent medium, with the aim of utilizing the motional characteristics 
for particle characterization, fractionation, or preparation. Such motion of a 
charged surface in a liquid under the action an electric field was termed 
electrophoresis. It is the mirror image of the phenomena of electroosmosis 
considered in the last section. We previously noted that most substances will 
acquire a surface charge when brought into contact with a polar medium. The 
origin of the charge for various organic and inorganic compounds lies in the 
acid-base equilibria of the solution. 

Electrophoresis is commonly used to differentiate proteins of different 
sizes. The origin of the protein charge can be related to the charge on amino 
acids, which are the basic structural units of protein molecules. We recall that an 
amino acid consists of an amino group, a carboxyl group, a hydrogen atom, and 
a “side chain” or  R group bonded to a carbon atom. Amino acids in solution at 
neutral p H  are predominantly dipolar ions rather than un-ionized molecules 
(Fig. 7.1.1B). In the dipolar form of an amino acid, the amino group is 
protonated (-NHl), and the carboxyl group is dissociated (-COO-). The 
ionization state of an amino acid varies with pH. In a strongly acidic solution 
(Fig. 7.1.1C), where the p H  is low, the carboxyl group is un-ionized 
(-COOH), and the amino group is ionized (-NHl). In a strongly alkaline 
solution (Fig. 7.1.1A), where the p H  is high, the carboxyl group is ionized 
(-COO-), and the amino group is un-ionized (-NH,). The surface charge on 
microorganisms can also be explained in terms of charged groups similar to the 
amino and carboxyl groups above. 

The mechanism responsible for charge on crystalline inorganic materials 
such as clays is associated with the lattice imperfections. The substitution of 
A13+ for Si4+ and Mg2+, Li+, etc., for A13+ in the clay lattice results in net 
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Figure 7.1.1 Ionized forms of an amino acid as a function of solution pH, 

negative charges that are relatively constant and independent of the ion con- 
centration and p H  of the fluid. Physical adsorption is due to van der Waals 
attraction, and hydrogen bonding is yet another charge mechanism. The occur- 
rence of negative charges on hydrocarbons, for example, is a consequence of the 
preferential adsorption of simple anions (e.g., CI ~ ) over simple cations, en- 
hanced by the hydrophobic nature of the interface with the water. The anions 
are polarizable and have smaller hydrated radii than cations do. Specific 
chemical adsorption due to chemical bonds between charged groups and the 
surface of the solids is another mechanism for some materials. Finally, the 
charge may be caused by the adsorption of ions that are identical to those in the 
solid lattice. For example, the charge on aluminum hydroxide sols depends on 
the relative concentrations of A?+ and OH- ions, which in turn depend on the 
pH. The mechanisms cited are among the more important physical-chemical 
ones that give rise to the charge on macromolecules and particles when in 
solution. 

In our discussion of electroosmosis the charged state of the surface was 
described in terms of the surface potential, which was in turn identified with the 
6 potential. Of course, the surface potential is related to the charge density a t  the 
surface. We may calculate this relation from charge conservation and Poisson’s 
equation by noting that the net charge of a particle q must be equal and 
opposite to the total charge in the double layer. As an example, consider a 
spherically symmetric diffuse double layer arising from a stationary spherical, 
nonconducting charged particle of radius a. The amount of charge in a layer dr 
of the spherical double layer shell is 

dq = 4.rrr2p, dr (7.1.1) 

where pE is the volume electric charge density ( C m - 3 ) ,  and r is the radial 
spherical coordinate measured from the sphere center. Substituting the Lapla- 
cian of the potential for the charge density and using the Poisson equation, we 
get the total charge in the double layer: 

(7.1.2) 
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where spherical symmetry has been assumed. Integrating and letting &$/dr-+ 0 
as Y --jr m, we obtain 

(7.1.3) 

We recall here the definition of surface charge distribution as the limit of a 
charge distribution in a surface layer of finite thickness 6 when 6 -+ 0 but the 
charge per unit area of surface remains finite. This charge per unit area of 
surface is the surface charge density q,, which is opposite in sign to the charge in 
the double layer and has units of C m -2 .  From Eq. (7.1.3), 

(7.1.4) 

This boundary condition relates q, to the potential distribution. I t  is generally 
valid with Y replaced by the appropriate normal coordinate, for example, x in 
the one-dimensional case of Fig. 6.4.1 or - Y  for the cylindrical electroosmosis 
problem of Section 6.5. 

The net charge can be calculated from the Poisson equation, which for 
spherical symmetry may be written 

(7.1.5) 

where we have here introduced the Debye-Huckel approximation of small 
potential. With 5 = Y+, the equation transforms to 

(7.1.6) 

which is exactly the same form as for the plane wall problem (Eq. 6.4.9). 
Integrating and applying the boundary condition 4 -+ 0 as y-+ gives 

4 = - A exp(- L) 
Y A D  

where A is a constant of integration. 
At the particle surface, 4 = 5, whence 

(7.1.7) 

(7.1.8) 

Eliminating the integration constant between Eqs. (7.1.7) and (7.1.8), we have 

(7.1.9) 
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With this result, surface charge can now be related to surface potential by means 
of Eq. (7.1.4), to give 

4, = E l ( ;  + 

From the definition of surface charge, we can write 

4 ' = 4 m a ( l +  a/A,) 

(7.1.10) 

(7.1.1 l a )  

or 

( 7.1.1 1 b) 

In other words, the potential is the sum of two superposed potentials: one 
arising from a charge q on the surface of radius a, and a second arising from a 
charge -4  on a sphere of radius u + A,. But the sum is just the net potential 
between two concentric spheres carrying equal and opposite charges and 
differing in radius by A,. 

l=--  4 4 
4 7 r ~ u  47re(u + A,) 

In the small Debye length limit, from Eq. (7.1.10), 

€5 
4 s  = (7.1.12) 

When treating the small Debye length case, we shall frequently use surface 
charge density and 5 potential interchangeably, relating them through Eq. 
(7.1.12). 

The use of constant potential and constant surface charge will generally 
bracket the actual conditions. In the case of charged polyelectrolytes, for 
example, where there are fixed charge sites, the surface charge is relevant. For 
colloids where the surface charge density varies with the solution state, the 
surface potential or potential would appear to be the more appropriate 
variable. 

7.2 Electrophoresis 

In this section we consider the electrophoretic motion of a charged spherical 
particle in an electrolyte solution under the influence of an applied electric field 
(Fig. 7.2.1). The particle is assumed rigid and generally considered to be 
nonconducting with a uniformly distributed surface charge. The assumption of a 
nonconducting particle is usually appropriate inasmuch as most conducting 
particles become polarized by the applied field, preventing the passage of current 
through the particle and so causing it to behave like a nonconductor. 

As shown in Fig. 7.2.1, a negatively charged particle will move in the 
direction opposite to the electric field. In general, because of the motion, the 
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Figure 7.2.1 Electrophoretic motion of spherical particle. 

diffuse double layer will not remain concentric with the sphere but will become 
distorted. This results in the particle being retarded. However, for both small 
and large Debye lengths, the distortion is small and may be neglected. We 
therefore examine these two limits first. 

We begin by first considering large Debye length, where A, is large 
compared with the radius a. In this case the particle may be treated as a point 
charge in an unperturbed electric field E x .  Equating the electrical force with the 
Stokes drag on the particle, we obtain 

qE,  = 6rrp Ua (7.2.1 ) 

where q is the net charge between the charged sphere and the concentric 
spherical double layer of predominantly opposite charge. We note that the use 
of Eq. (7.2.1), is appropriate to an isolated charge and hence large A,, since the 
isolated charge corresponds to the condition of concentration approaching zero, 
that is, A, tending to infinite. 

From the above equation and the formula relating 5 potential and charge 
(Eq. 7.1.1 la) ,  the electrophoretic velocity is 

2 Le(1 + a/A,)E, 2 LEE, - --- - (7.2.2) 

Now, in the electrophoresis literature reference is often made to the electro- 
phoretic mobility U I E ,  or velocity per unit field, with units C s kg-' (cf. Eq. 
2.5.3)  in place of electrophoretic velocity. Here, we shall generally refer to the 
electrophoretic velocity. 

Equation (7.2.2) with the term in alA, neglected is known as the Hiickel 
equation. It is not generally applicable in aqueous media, although it may be 

3 c L  
U = :  

cL 
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applicable in nonaqueous media of low conductivity. For example, we would 
note that for A, = 10 nm a particle radius of 1 nm would be required to give 
h,,/a = 10. For this reason we consider next the more relevant limiting case for 
aqueous media of small Debye length. 

In analyzing the electrophoretic motion of a nonconducting particle where 
the Debye length is small compared with the characteristic particle dimension, 
say the radius, we may neglect curvature effects in the diffuse part of the double 
layer and treat the particle surface as locally plane. The electric field may 
therefore be considered to be applied parallel to the surface, and the analysis 
carried out in Section 6.5, in which electrical and viscous forces were balanced 
to determine the electroosmotic velocity for a fixed surface, applies here 
unchanged. Therefore in a reference frame in which the particle is stationary, 
from Eq. (6.5.5) we may write 

(7.2.3) 

Here, M ,  is the velocity of the liquid tangential to the surface, and E,  is the 
applied electric field tangential to the surface. The tangential velocity and 
electric field are not constant but vary along the surface and are coupled 
through this equation. 

To specify the velocity distribution the electric field distribution must be 
determined and our procedure follows in outline that of Morrison (1970). With 
E = -V+, the electric field is defined by the Laplace equation 

v2+ = 0  (7.2.4) 

subject to the boundary conditions that the normal component of the current 
density vanishes at the surface, n.V4 = 0, while far from the particle, the 
potential approaches the value corresponding to the uniform applied field E x .  

Recall that within the small double layer approximation, the velocity 
‘‘slips’’ at  the wall going from M, to zero discontinuously. Now irrotational flow 
defined by the Laplace equation is a solution for the velocity field that admits of 
a “slip” condition at  the surface but also satisfies the full Navier-Stokes 
equations, although not of course the usual no-slip boundary condition. Such an 
irrotational flow exerts no force or moment on the particle and the velocity is 
derivable from a potential, that is, u = -V@ where @ is the velocity potential. 
The velocity must also satisfy the boundary conditions of no normal flow 
through the surface, whence n -V@ = 0, while far from the particle the velocity 
potential approaches the value corresponding to the uniform velocity U. 

The slip flow condition at  the surface is given by Eq. (7.2.3) which can 
also be written in terms of the potentials @ and 4. As we have seen, however, 
both the differential equations and boundary conditions are identical for the 
electric potential and velocity potential so that from Eq. (7.2.3) 

(7.2.5) 
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This equation can be expressed in terms of the velocity and electric field and on 
changing to a reference frame in which the particle is moving relative to a 
stationary fluid, we have 

(7.2.6) 

This is just the Helmholtz-Smoluchowski equation, as might have been expec- 
ted, since electrophoresis is just the complement of electroosmosis. Its derivation 
shows that the electrophoretic velocity of a nonconducting particle is in- 
dependent of the particle size and shape for a constant surface potential when 
the Debye length is everywhere small compared with the characteristic body 
dimension. Note that Eq. (7.2.6) differs from the Huckel large Debye length 
result (Eq. 7.2.2) only by the factor 5.  

With a finite-thickness double layer we may distinguish three effects that 
will alter the electrophoretic velocity from that given by the Helmholtz- 
Smoluchowski or Huckel relations. These effects, which in general are not 
mutually exclusive, are termed electrophoretic retardation, surface conductance, 
and relaxation (Shaw 1969). 

We first consider electrophoretic retardation, which results from the fact 
the ions in the double layer will have a net movement opposite to that of the 
particle. Through drag interaction this creates a local electroosmotic flow of the 
solvent that opposes the motion of the particle. Henry (1931) accounted for this 
effect and calculated the electrophoretic velocity for spherical particles with 
arbitrary values of A, and particle conductivity. Henry’s results for conducting 
particles do  not take into account that the particles will become polarized at  the 
surface and therefore are of limited applicability (Levich 1962). For noncon- 
ducting particles he showed that within the assumptions made, the limits for 
small and large Debye lengths were the velocities given by the Hiickel and 
Helmholtz-Smoluchowski relations, respectively. Here, we shall restrict the 
discussion to nonconducting particles. 

The three principal assumptions made by Henry in his analysis were: 

1. The double layer is undistorted, and the potential field in the double layer 
arising from the particle charge can be superposed with the potential field 
about the spherical particle that results from the application of an electric 
field parallel to the direction of motion. 
The surface potential on the particle is low enough that the Debye-Huckel 
approximation is applicable. 
The viscous flow generated is inertia free. 

2. 

3 .  

Note that the mutual distortion of the fields resulting from their interaction, 
which Henry did not take into account in his 1931 paper, is what gives rise to 
the relaxation and surface conductance effects discussed later. 

The details of Henry’s solution are somewhat lengthy, so we only outline it 
here. The particle is taken to have a constant electrophoretic velocity U as a 
consequence of applying a uniform electric field E,, as in Fig. 7.2.1. It is 
convenient to examine the problem in a reference frame in which the particle is 
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stationary and the fluid has the steady velocity -U at infinity, as shown in Fig. 
7.2.2, with the electric field positive in the direction of the positive x axis. The 
polar coordinate system used is shown in Fig. 7.2.2. 

We begin by writing the solution for the electric field about a nonconduct- 
ing sphere, remembering that this field will simply be added to that produced by 
the charge separation in the double layer. With E = -V$, the applied electric 
field satisfies the Laplace equation (7.2.4) subject to the boundary conditions 
$ = - E,Y cos 8 as Y +  m, and that the normal component of the current density 
vanishes at  the surface, whence d $ l d r  = 0 at Y = a. This well-known electro- 
statics solution is given by 

$ = 4,.Y + y 1 +s a3  8 (7.2.7) 

Now the total electric potential a t  any point is taken equal to the sum of 
the potential due to the applied electric field plus the potential in the double 
layer, and this sum must satisfy Poisson’s equation. Denoting the potential in 
the double layer by I++, we see that 

PE  

E 
(7.2.8) 

since V24 = 0. In accordance with the assumptions of the model set out above, 
the potential I+$ = $(Y) is evaluated by using the Debye-Huckel approximation, 
which for spherical symmetry from Eqs. (7.1.7) and (7.1.8) gives 

(7.2.9) 

Figure 7.2.2 
Arrows indicate directions of streamlines and electric field lines. 

Electrophoretic motion in reference frame in which particle is stationary. 
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It remains to evaluate the inertia free, viscous velocity field subject to the 
combined electric field force. The Navier-Stokes equation in this case is 

-pv2u + vp = -pEV(+  + *) (7.2.10) 

where pE is expressible in terms of i,b through Eq. (7.2.8). This equation, 
together with the continuity equation 

v - u  = 0 (7.2.1 1) 

and the boundary conditions 

u , = - U c o s e  u , = U s i n O  $ = O  a s r - + w  (7.2.12a) 

u , = u , = O  $I=[ a t r = a  (7.2.12b) 

define the velocity distribution about the particle. 
At this point the solution procedure becomes somewhat lengthy and 

detailed, although examination of the linear system shows that a solution can 
“in principle” be obtained. See Henry (1931) and Russel et 71. (1989) for details 
of two approaches. Employing the solution so obtained for the pressure 
distribution and the velocity distribution about the sphere, we can calculate the 
x component of the stress normal to any point of the surface T,,. The 
hydrodynamic force on the sphere is then 2 r a 2  J,; T,-, sin 8 do. Adding to the 
hydrodynamic force the force due to the fixed surface charge -47r~a’(d$l 
dr),=,E, (Eq. 7.1.3) gives the total force on the sphere: 

-67rpaU + 67r&E,a( 1 + 5aS dr - 2a3 1: 9 d r )  = 0 
r 

(7.2.13) 

This total force must vanish for steady motion, so it has been set equal to zero. 
Using the Debye-Huckel solution for the potential distribution in the 

double layer enables Eq. (7.2.13) to be integrated to give a result that may be 
written in the form 

where 

1 4 1 5  9 6 a  + - f f  f (a)  = 1 + - f f 2  - - f f 3  - - 
1 5 

16 48 96 

+ - 1 a4 e ” ( 1 -  $) 1; !$ d t  
8 

(7.2.14a) 

(7.2.14b) 

and where (Y = a / h ,  is the inverse of the Debye length ratio used earlier. This 
equation is known as the Henry equation. The Henry equation has the property 
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1.5 

f 

1 .o 

that in the limits of large and small Debye lengths it gives, respectively, the 
Hiickel and Helmholtz-Smoluchowski velocities. The function f(  a )  increases 
monotonically with a from 1 to $, as seen in Fig. 7.2.3. 

We return now to consider one of the other two electrophoretic effects 
mentioned earlier, that of surface conductance, which it was noted was not 
taken into account in Henry’s 1931 paper. This phenomenon arises because 
with a finite-thickness double layer there is a region of the flow near the surface 
in which charge neutrality is absent and in which there is an excess of 
counterions compared with the bulk of the electrolyte. The excess counterion 
concentration gives rise to a region of higher conductivity in which the applied 
electric field is reduced. In what follows we estimate the effect of this surface 
conductance in the limit where A,la G 1 but finite. This calculation was 
published independently by Booth (1948) and Henry (1948). 

To determine the distribution of electric potential, as modified by surface 
conductance, we again take the electric field to be spherically symmetric and to 
satisfy the Laplace equation. A thin spherical double layer shell is considered to 
surround the particle, and the conductivity of this shell is taken to have the 
mean value ui. In reality the conductivity in the thin double layer varies 
continuously. Outside of the double layer shell the bulk conductivity ub is that 
of the electrolyte. This electrostatics problem is a straightforward one in which, 
from the Laplace equation, the solution for the potential is 

- 

in fluid (7.2.15 a) 

and 

+ , = - E , ( B Y + ,  ca3 1 cos0  in double layer (7.2.1 5 b) 

where A ,  B ,  and C are constants to be determined by the boundary conditions. 
Note that this is the solution form previously given by Eq. (7.2.7) for the 
applied potential. 

Y 
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The boundary conditions appropriate to the above solution are continuity 
of Cp and continuity of current density uVCp at the nonconducting sphere surface 
Y = a, and at  the edge of the double layer r = a + 6, where 6 is the thickness of 
the double layer shell. From straightforward calculation 

We digress for a moment to recall that surface current density, in parallel 
with the definition of surface charge, is the limit of the current distribution 
flowing within a surface layer of finite thickness 6 when 6-0, where the 
current per unit width of surface in the direction normal to that of the current 
flow remains finite. The surface current density is expressed through the relation 

is = -vSVs+ (7.2.17) 

where as is the surface conductance and V, is the surface gradient. 
In Eq. (7.2.16) identifying the product u:6 with the surface conductance 

a;, expanding for S/a small, and taking the limit as 6 / a + 0  lead to the result 

a,, - 2u,/a 
A =  

2(Ub + v J a )  
(7.2.1 8 )  

In the limit 6/a+ 0, it can be assumed that the exterior applied field extends to 
the surface r = a, and the potential there is given by 

4 f = - ( 1 + A ) E x ~ ~ ~ ~ 8  (7.2.19) 

Without surface conductance, corresponding to u S / a  = 0, the constant A = $, 
and the potential at  the surface is 

This is the value given by the potential solution used in the electrophoretic 
retardation analysis (Eq. 7.2.7). 

Examination of Eqs. (7.2.19) and (7.2.20) shows that if a new reduced 
“effective” electric field ( E x ) , , ,  = $ (1 + A ) E x  is defined, then the solution for the 
electrophoretic velocity with surface conductance will be exactly the same as 
given by Eq. (7.2.14) with E x  replaced by (Ex)eff ,  whence 

Expressed in terms of surface charge by means of Eq. (7.1.10), 

(7.2.2 1) 

(7.2.22) 
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What can be seen is that the effect of surface conductance is strongest in poorly 
conducting solutions. 

The order of magnitude of the surface conductance may be estimated in 
the small Debye length limit by noting that approximately 

(7.2.23) 

from which 

This shows that the first-order correction for surface conductance is O( A,la). 
For A,/a 1 with q,'lpcr6 5 0(1), Eq. (7.2.22) reduces to the Helmholtz- 
Smoluchowski result. 

The last effect mentioned at  the outset in connection with a finite-thickness 
double layer is that of relaxation. Under the action of the applied electric field 
the ions in the double layer have a net movement opposite to the particle. The 
ions drag along the liquid, setting up a local electroosmotic flow that opposes 
the particle motion. I t  is this effect that is taken into account in the analysis of 
Henry. However, the motion of the ions also distorts the double layer from 
sphericity; that is, the electric field tends to strip the double layer from the 
particle and make it asymmetric so that the center of the double layer lags 
behind the center of the particle (Fig. 7.2.4). The relaxation effect has its origin 
in this asymmetry, the name being used because it is a consequence of the finite 
time required for the adjustment of the double layer to the original symmetry by 
electromigration and diffusion in the moving system. 
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Figure 7.2.4 Distortion of double layer around particle in electrophoretic motion. 
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7.3 

For the example of Fig. 7.2.4, as the particle moves to the left the cations 
in the liquid are left behind; restoring the symmetric double layer from the 
cations in the new region of liquid entered by the particle requires a finite time. 
O n  average then, the double layer is not concentric with the particle, and the 
displacement of charge sets up a counter emf that reduces the electrophoretic 
velocity. 

A proper calculation of the relaxation effect requires that the velocity 
distribution in the liquid be explicitly taken into account. Moreover, in general, 
there will be a mutual interaction between the relaxation effect and the 
electrophoretic retardation, which must now be determined for an asymmetric 
atmosphere. If the total electric potential is calculated with the charge density 
found from solving the Nernst-Planck equation (together with the Navier-Stokes 
equation), the surface conductance will then also be accounted for. Analytic 
solution procedures are fairly complex for the geometry at  hand. Numerical 
solutions have, however, been carried out by Wiersema et al. (1966). At low 
potentials, for which analytic solutions have also been determined, the behavior 
of the results is much the same as given by the Henry equation (Fig. 7.2.3). At 
large and small Debye lengths (alA, 5 0.1 and a / h ,  2 300) the relaxation effect 
can generally be neglected. For these reasons, we shall not discuss this effect 
further, other than to refer the interested reader to Wiersema et al., where 
numerical results are given and where reference to other work on the subject 
may also be found. Additional references are in Russel et al. (1989). 

Electrophoretic Separations 

Electrophoresis is a powerful tool in the separation and analysis of colloids, 
proteins, and nucleic acids. There are three major electrophoretic techniques as 
well as variations, each with its own name. Which one is applicable or most 
appropriate depends on the size and characteristics of the dissolved or suspend- 
ed material and the type of information desired. The three principal techniques 
are microelectrophoresis, moving boundary electrophoresis, and zone electro- 
phoresis (Shaw 1980). 

In microelectrophoresis the particle velocity is observed directly with a 
microscope (or ultramicroscope). It is applicable to reasonably stable colloidal 
suspensions or emulsions containing microscopically visible particles or droplets 
in sufficiently dilute concentration that the individual particles can be dis- 
tinguished. The electrophoretic behavior is then measured directly. 

The measurement of particle velocity in microelectrophoresis is carried out 
with a type of apparatus shown schematically in Fig. 7.3.1 (Shaw 1969). The 
apparatus consists basically of a microscope with a calibrated reticule for the 
observation of the individual particles, a thin flat cell of rectangular cross 
section, although long cylindrical cells are also used, electrodes across which the 
potential is applied, and a system of tubing and stopcocks for filling and 
cleaning the cell and electrode compartments. 

Because the internal glass surfaces of the cell generally acquire a charge, 
there is a double layer formed on the cell walls that gives rise to an electro- 
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Figure 7.3.1 
trophoresis. New York: Academic. With permission.] 

Vertically mounted flat microelectrophoresis cell. [Shaw, D.J. 1969. Elec- 

osmotic flow of the liquid near the walls. If the double layer is sufficiently thin, 
the electroosmotic flow may be taken to be a constant “slip velocity” at  the 
walls. In fact, because of viscous effects, the velocity must drop to zero right at  
the walls in a layer on the order of a Debye length in thickness. Since the cell is 
closed, the electroosmotic flow in turn causes a compensating return flow of 
liquid with a maximum velocity at the center. The velocity distribution is 
parabolic because of the Poiseuille character of the flow. However, the liquid 
moves in one direction a t  about a Debye length from the wall, more slowly 
further from the wall, and in the opposite direction at  the center of the cell (see 
Fig. 7.3.2). At some point in the cell there is no net motion of the liquid as the 
result of the 5 potential of the cell wall-liquid interface. This point where the 
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Stationary levels and velocity distributions in cylindrical electrophoresis 

electroosmotic flow and the return flow of the liquid cancel is called the 
stationary level. At the stationary level the observed velocity of the particles is 
equal to their electrophoretic velocity (Fig. 7.3.2). 

We next calculate the stationary level and observed particle velocity in a 
cylindrical capillary of radius a, assuming h,/a < 1. The electroosmotic effect 
gives rise to a velocity uEO across the cross section of the tube toward the 
electrode of the same polarity as the charge on the cell wall. The liquid velocity 
uL across the tube according to the description above, is the vector sum of the 
electroosmotic velocity and the reverse Poiseuille flow: 

(7.3.1) 2 uL = uEO - c(u - r 2 )  

where c is a constant. 

the cross section must be zero: 
The value of c is determined by the condition that the net liquid flux across 

loa 2rrru dr = 0 (7.3.2) 

Substituting the velocity distribution of Eq. (7.3.1) into (7.3.2) and integrating, 
we get 

(7.3.3) 

from which 

3 
U L  2 r 2  -- 

UEO a2 

(7.3.4) 
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The stationary level corresponds to uI,  = 0 and is therefore at 

1 / 2  "+) il (7.3.5) 

This same result can be obtained directly from Eqs. (6.5.24) and (6.5.23) with 
A,la < 1. In terms of the distance from the wall yStat as a fraction of the 
diameter, 

(7.3.6) 

The observed velocity of a particle at any position in the cell is 

(7.3.7) 

where uE is the true electrophoretic velocity. If u E  is known from observation at 
the stationary level, the electroosmotic velocity can be calculated from the 
particle velocities at other positions in the cell. Note that with the small Debye 
length assumption, if the particles and the cell wall have the same 5 potential 
then from the Helmholtz-Smoluchowski equation u E  = -uEo, and according to 
Eq. (7.3.7) the velocity at the center of the cell is 2u, .  This should not be 
surprising, since it is equivalent to the maximum velocity in an ordinary 
Poiseuille flow being equal to twice the mean velocity. 

Similarly, for a plane cell of depth 2h  (in place of 2a) with y distance from 
the bottom or top of the cell, we have from Eq. (4.2.14) that 

U L  = M E O  - c(2yh - y2)  (7.3.8) 

Again, setting the net flux equal to zero, we find 

from which 

For the plane cell, uL = 0 when 

The observed velocity is again uE + u L ,  whence 

(7.3.9) 

(7.3.10) 

(7.3.11) 

(7.3.12) 
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It follows that at the channel center y = h,  the observed particle velocity 
uObs = uE - u,,/2.  Therefore, in the special case when the particles and the cell 
walls have the same 6 potential so that uEO = - u E ,  the observed velocity at  the 
cell center is $u, .  Again this is equivalent to the maximum velocity in Poiseuille 
flow in a two-dimensional channel being equal to three halves the mean velocity. 

In microelectrophoresis the measurement is carried out by filling the cell 
with the suspension and applying a known potential. With an objective lens that 
gives a small depth of focus, the microscope is focused at  the stationary level 
and the time for a particle to move a known distance is measured. This 
technique is also applicable with several different types of particles present. 

An alternative technique when the particles are too small to be readily seen 
by an ultramicroscope is that of moving boundary electrophoresis, which has its 
parallel in hindered settling. Here, the motion of the interface formed between a 
zone of the suspension and the solvent or dispersion medium is measured under 
the influence of an electric field. This technique is particularly useful for 
separating and identifying dissolved macromolecules such as proteins. 

A schematic illustration of the apparatus used in this technique, in its 
simplest form, is shown in Fig. 7 .3 .3 .  I t  consists of a U-tube fitted with 
electrodes at the top of each arm of the U. The suspension is added to the 
bottom of the U. A voltage is applied; that is, a current is passed through the 
cell, as a consequence of which the boundary will migrate. This migration is 
followed by an optical technique, usually a schlieren system as with sedi- 
mentation measurements in a centrifugal field. 

In the late 1930s A. Tiselius modified the apparatus (Fig. 7.3.4) so that the 
cell arms are rectangular rather than circular, thus permitting better visibility of 

Electrode 

Suspending liquid 

'b Suspension 

Figure 7.3.3 Moving boundary electrophoresis. 
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Figure 7.3.4 Tiselius moving boundary electrophoresis apparatus. [After Shaw, D.J. 
1980. lntroduction to Colloid and Surface Chemistry, 3rd edn. London: Butterworths. 
With permission.] 

the interface. In addition, the boundary surface is established by sliding together 
previously filled upper and lower portions of the cell. The upper portion 
contains the suspending liquid, and the lower portion contains the suspension. 
I n  this way the initial boundary is well defined, although as it  moves diffusion 
will in time broaden the interfaces (ascending and descending boundary), as 
discussed, for example, in connection with centrifugal sedimentation. In this 
regard, sedimentation effects should be minimized by keeping the particle 
density close to that of the suspending liquid and by keeping the particle sizes 
small. This latter requirement will tend to amplify any diffusional effects. As 
with the sedimentation processes discussed in Chapter 5, if the solution consists 
of a number of electrophoretically different fractions, the sharp peak corre- 
sponding to the initial boundary, either ascending or descending, will not only 
broaden but will split up into different broadened characteristic peaks moving at  
different speeds, giving rise to a chromatographic pattern. 

The moving boundary method has the same complication of a return flow 
as the capillary. However, because the U-tube is relatively wide, the resultant 
induced flow is essentially uniform over the cross section. The Tiselius method 
was for some time after its development an important analytical technique 
where electrophoretic mobilities were not required, as in protein analysis. Today 
it has been largely superseded by the simpler and more effective zone method. 

In zone electrophoresis a homogeneous solid or gel framework is used to 
support the solution and minimize convectional effects arising from temperature 
gradients due to Joule heating. In this procedure the supporting material is 
saturated with the buffer solution, and a small amount of the macromolecular 
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solution being examined is applied as a narrow band. When a potential 
difference is applied between the ends of the strip, each component of the 
solution migrates at  a rate determined primarily by its electrophoretic mobility. 
After an appropriate time the strip is removed, dryed, and developed as 
appropriate to reveal the positions and concentrations of the various com- 
ponents in the initial solution. The procedure is seen to be analogous to zonal 
sedimentation discussed in Section 5.5 in connection with centrifugal sedi- 
mentation. 

Some supports interact only weakly with the macromolecular solutes, and 
among these are filter paper, cellulose, and cellulose acetate membranes. Other 
supports retard the motion of some molecules with respect to others: for 
example, polyacrylamide and agarose gels, which discriminate by size and have 
a molecular sieving effect, and ion exchange papers, which retard charged 
molecules. Their use here is analogous to size exclusion chromatography 
discussed in Section 4.7. The use of retarding supports will tend to increase the 
sharpness of the separations and minimize the diffusion and dispersion effects 
that tend to broaden the bands. When retarding gels are used, the process is 
termed gel electrophoresis. 

Even without molecular sieving or charge retardation associated with the 
support, observed electromigration velocities will generally be affected by 
electroosmotic flow and by capillary flow through the porous medium. These 
flow effects make the process unsuitable for mobility measurements. However, 
by somewhat empirical means, it is today the principal analytical procedure 
used for protein and amino acid analysis because it is simple, cheap, enables 
complete separation of all electrophoretically different components, and because 
small samples can be studied, which is often important for biochemical analyses. 

Another important variant on zone electrophoresis is isoelectric focusing 
(Righetti 1983). Its operation is based on the fact that, as discussed in Section 
7.1, the charge on proteins, macromolecules, and many colloidal particles 
depends on pH. Such particles exhibit an isoelectric point, which is the pH at 
which there is no average net charge on the particle. Below the isoelectric pH 
the particle will be positively charged; above it, negatively charged. Evidently a t  
the isoelectric point the electrophoretic mobility will be zero, and above this 
point the particle will move toward the cathode and below this point it will 
move toward the anode. 

In isoelectric focusing, electrophoresis measurements are carried out in a 
p H  gradient so that the particle being examined will migrate until it reaches the 
p H  of its isoelectric point. Generally, gels are used, and the pH gradient is 
established through the use of a mixture of ampholytes, each of which under the 
action of an electric field comes to rest near its isoelectric point. Ampholytes are 
molecules that have positive and negative charges, for example, polymers 
containing significant amino and carboxyl groups. At the isoelectric point, since 
the net migration of the particle under study is zero, convection of the particle 
by diffusion must just be balanced by the particle migration in the electric field; 
thus 

DVc, = u,z,Fc,E (7.3.13) 
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The focusing phenomenon discussed in Section 6.6 in connection with the 
removal of metal ions from soils under the action of an electric field is directly 
analogous to isoelectric focusing. There, the dominant transport processes are 
electromigration and diffusion, and p H  gradients are set up between the anode 
and cathode as a consequence of the electrolysis of water. Precipitated metal 
was found to accumulate at  the pH of minimum solubility which coincided with 
a point between the electrodes where a sharp jump in the p H  occurred. This 
point of minimum solubility generally occurs at  the isoelectric point, that is the 
point a t  which the concentration of the negative ions and positive ions are 
equal. For the zinc removal discussed, these were mainly zinc ions (Zn”)  which 
migrated from the anode toward the cathode and zincate ions (HZnO, ) which 
formed in the high p H  cathode region and then migrated back toward the 
anode. The isoelectric focusing effect reported in Probstein & Hicks (1993) was 
suggested much earlier by Gray & Schlocker (1969). 

Many readers will by now have recognized that the procedure of isoelec- 
tric focusing has another analogue in density-gradient centrifugation discussed 
in Section 5.5. 

A last variant we mention is capillary zone electrophoresis (Gordon et 
al. 1988). It employs an electroosmotically driven flow in a capillary, arising 
from an electric field applied parallel to the capillary, which is charged when in 
contact with an aqueous solution (Section 6.5). The flow has a nearly flat 
velocity profile (Fig. 6.5.1), thereby minimizing broadening due to Taylor 
dispersion of the electrophoretically separated solute bands. 

In concluding this discussion of electrophoretic separations, we note a 
general model of these processes developed by Saville & Palusinski (1986) in 
which the effect of chemical reactions on the dissolved species is taken into 
account. The approach is analogous to that described for the effects of chemical 
reactions on electroosmosis and electromigration in Section 6.6. 

7.4 Sedimentation Potential and Streaming Potential 

In electrophoresis, where charged particles move relative to a stationary liquid, a 
potential is developed. In the case of sedimentation under gravity, pictured in 
Fig. 7.4.1, or sedimentation in a centrifugal field, the potential so developed by 
the particle motions is termed the sedimentation potential. The nature and 
magnitude of the potential can be understood by reference to the com- 
plementary phenomena of electroosmosis for the capillary flow considered in 
Section 6.5. Following the description of Shaw (1969), we note that the liquid 
flowing relative to the fixed charged wall carries a net charge, that of the electric 
double layer. The flow therefore gives rise to what is termed a streaming current 
and consequently a potential difference. The potential opposes the mechanical 
transfer of charge by causing back conduction by ion diffusion and, to a much 
lesser extent, by electroosmotic flow. The transfer of charge due to these two 
effects is called the leak current. The potential measured at  the equilibrium 
condition when the streaming current and the leak current cancel is termed the 
streaming potential. 
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Figure 7.4.1 Sedimentation potential. 

We may calculate the streaming potential for a capillary from the axial 
current flow, which, according to Eq. (3 .4 .4) ,  for a fully dissociated salt is 

Here, for simplicity we have taken the mobilities to be equal; that is D ,  = 

D -  = D. The total current is then given by integrating across the capillary cross 
section: 

r a  

I = J i 2 r r d r  (7 .4 .2)  
0 

Using the concentration and velocity distributions calculated in Section 6.5, we 
obtain the total current by quadrature. We do not carry out the integrations 
here but merely note that within the Debye-Huckel approximation the current 
corresponding to the constant surface potential solution represented by Eqs. 
(6 .5 .23)  and (6 .5 .24)  is 

2 d @  I=-.rra - 
dx 

where, as before, vb is the conductivity of the bulk solution. Note further that 
the coefficient of dpldx in the expression for I is identical to the coefficient of 
d @ l d x  in the expression for the electroosmotic volume flow rate Q with 
A,la < 1 (Eq. 6.5.24) .  This is an example of the Onsager reciprocal relation of 
thermodynamics. 

With h,la < 1 and, from Eq. (7 .1 .12) ,  5 = qShD/c ,  it follows that the 
terms multiplied by 2 / a  in Eq. (7 .4 .3)  may be neglected. From the definition of 
the streaming potential as the equilibrium condition corresponding to the net 
current being zero, we may write 
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E S  
= AP (7.4.4) 

Here, AGSr is the streaming potential difference developed between the ends of 
the capillary across which the applied pressure difference is Ap.  Using the 
Helmholtz-Smoluchowski relation to replace 5 by the electroosmotic velocity 
and Ohm’s law to eliminate the conductivity and electric field we obtain the 
following expression connecting the streaming current, streaming potential, and 
electroosmotic velocity: 

l,rA@s,, = U,,na2Ap (7.4.5) 

The left side of Eq. (7.4.5) is just the power developed by the streaming 
current, and the right side is the rate of work done by the shear force in causing 
the electroosmotic flow. This latter statement follows from the fact that, from 
an overall balance of forces in a steady, fully developed, viscous capillary flow in 
a circular capillary of radius a, 

F 3 2rrar,,L = rra2Ap (7.4.6) 

where F = total shear force on the fluid 
T,, = wall shear 
L = capillary length 

We may therefore rewrite Eq. (7.4.5) as 

p,, = FUE, (7.4.7) 

where P,, is the power developed by the streaming current. 
Let us return now to the evaluation of the sedimentation potential. 

Considering the inertia free fall of a charged particle in a liquid, the shear stress 
near the particle will cause a surface current to flow in a direction defined by the 
charge of the particle (front to back for a negatively charged particle, and vice 
versa). This current must then flow through the bulk of the solution in the 
opposite direction. In complete analogy with the electroosmotic case there is 
therefore a sedimentation current and corresponding sedimentation potential set 
up by the falling particle. 

Since for small Debye length the situation is completely complementary to 
the electroosmotic case, we may apply the result of Eq. (7.4.5), identifying A p  as 
the force per unit particle cross-sectional area exerted by the fluid on the 
particle. Assuming Stokes flow, we use 6 n p a U  for the force on a single particle; 
i f  there are n particles per unit volume, then the total force per unit volume is 
taken to be nF. With the potential drop measured over the suspension height H ,  
it readily follows that 
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(7.4.8) 

where U is the particle fall speed given by Eq. (5.4.6), and a is its radius. 

electric field (Newman 1991). Therefore, 
For small Debye length the particle fall speed is not affected by the induced 

(7.4.9) 

where to  avoid confusion with potential we have used (Y to denote the volume 
fraction of the particles. From Eq. (7.4.9) the potential produced by sedimenting 
particles of uniform size could in principle be used to evaluate the .5 potential. 
However, the magnitude of this potential is small, and  its measurement is 
difficult. 
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Problems 

7.1 In problem 2.4 the movement of charged colloidal particles in water 
contained in an annular gap between two oppositely charged infinitely 
long cylinders was considered. The potential distribution across the gap 
d 4 l d r  was assumed constant, where is the potential and Y is the radial 
cylindrical coordinate. It is desired here to take the analysis one step 
further and determine the potential and concentration distribution within 
the gap, neglecting any electrode effects. 
a. Write the mass flux j (kgm-2 s - l )  in terms of d+/dr, the particle 

concentration p, and the known parameters particle charge q, particle 
radius a, and water viscosity p. Use the fact derived in Problem 2.4 
that the effect of diffusion can be neglected. 
What is Poisson’s equation in cylindrical coordinates for the spatial 
variation of the potential +, where the charge distribution is expressed 
in terms of the permittivity E ,  particle mass m, charge q, and con- 
centration p ?  
Show from conservation of mass that j r  = b, where b is a constant. 
By integration determine the concentration distribution p and po- 
tential distribution 4 across the annular gap in terms of Y, two 
integration constants, the parameters A = - q / b r r p a  and B = -q/mE, 
and the constant 6 .  

It is desired to estimate the electrophoretic velocity U of a long, noncon- 
ducting, charged cylindrical particle of length L and radius a and with a 
low surface potential l, as a result of the application of an electric field E x  
parallel to the symmetry axis. The Debye length is arbitrary but finite, and 
the flow is a low Reynolds number, inertia free one. 
a. Verify that the potential distribution about the cylinder takes the form 

4 = AK,(r/A,), where r is the radial cylindrical coordinate and KO is 
the modified Bessel function of the second kind of order zero. Evaluate 
the constant A. 
Derive a relationship between the surface potential 5 and particle 
charge q. Note that d l d x [ K c , ( x ) ]  = - K , ( x )  where K ,  is the modified 
Bessel function of order one. 
Assume that the resistance to the cylinder motion is due to the shear 
stress associated with the electroosmotic flow that is generated, so that 
the Navier-Stokes equation reduces to a balance between viscous and 
electrical forces. Show that the solution for the electrophoretic velocity 
of the cylinder is the same as that for a sphere of the same zero 
potential with the Debye length small. 
Why is the expression for the electrophoretic velocity, derived in part 
c, valid for all Debye lengths, if the cylinder length can be considered 
infinite? 
Brownian motion would tend to give the slender cylindrical particle a 
random orientation. If the applied field is sufficiently strong, will the 
particle acquire a preferred orientation? Explain. 

b. 

c. 
d. 

7.2 

b. 

c. 

d. 

e. 
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7.3 A long thin cylindrical tube of radius a = 5 x lo - '  m and length L = 0.1 m 
is closed at  both ends by electrodes, across which a voltage drop A 4  = 

1OV is applied. The tube contains an ideal dilute aqueous solution of a 
fully dissociated doubly charged symmetrical binary salt ( z  = 2 )  a t  a 
concentration co = 1 mol m-3. The tube wall has a fixed surface potential 
6 = 1.43 x V. The temperature T = 25"C, the permittivity E = 7 x 
lo-' ' CV- '  m-', and the viscosity p = 
a. 
b. 

c. 

d. 

Pa s. 
Determine the Debye length A, at the tube wall. 
Using Eqs. (6.5.23) and (6.5.24) find the radial distance at  which the 
water velocity is zero. Compare the result with Eq. (7.3.5). 
Using Eqs. (6.5.23) and (6.5.24) find the water velocity at the tube 
center. 
Find the water velocity at  a distance A, from the wall ( r  = a - A D ) .  
Sketch the velocity profile in the tube down to the wall as a function 
of the radial distance r. 
Assume that spherical particles of radius R and charge 4 are- 
introduced with the number of particles small enough that the suspen- 
sion is dilute. What is the particle velocity at  the radius where- the 
water velocity is zero, assuming R = m and q = 26.3 x 
10-l6 C. 

A combination ultracentrifuge-electrophoresis apparatus has been pro- 
posed for macromolecular separations by placing electrodes at the top and 
bottom of the centrifuge cell. Such a device takes advantage not only of 
difference in mass but also charge. 
a. How would Eq. (5.5.1) for the particle drift velocity in an ultracen- 

trifuge be modified if the particle charge is q and the strength of the 
applied electric field is E,? Assume that the potential distribution is 
constant along the cell. 
What potential gradient is required to keep a sedimenting band of 
spherical particles stationary at  0.1 m from the axis of rotation if the 
particle radius a = C, and the sedimentation 
coefficient is s. The fluid viscosity p = 10-3 Pa s, and the rotor 
speed is 6000 rad s-I. 

The process of employing electrophoretic migration to reduce buildup of 
suspended charged particles on a filter surface through which the suspend- 
ing liquid flows is termed electrofiltration. Consider the separation of a 
charged macromolecular solute by ultrafiltration. The particles are nega- 
tively charged, and an  electric field E ,  is applied normal to the membrane 
surface and directed away from the surface so as to augment the back 
transport of particles away from the membrane. 
a. Assuming a thin film model with gel formation at  the membrane and 

that the potential distribution remains constant in the concentration 
polarization layer, estimate how the limiting flux would be altered. 
Can concentration polarization be prevented altogether? Explain. 

e. 

7.4 

b. 

m, charge q = 

7.5 

b. 
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7.6 An experiment on sedimentation potential is to be carried out. The 
medium is water at  a temperature T = 2S°C, with a viscosity p = lo-' Pa s 
and a permittivity E = 7 x lo-' '  C V ' m-'. The particle concentration in 
the water is co = 10 mol m-3, and the particle diffusivity is D = 

m's-'. The particles are spherical, have a density twice that of water, 
a radius a = lo-'  m, and a volume concentration in the water of a = 0.02. 
I f  the particle charge number z = 1 and if each particle carries a charge of 
q = 2.89 x C, what potential difference will be detected across the 
electrodes, assuming the electrodes are separated by a distance H = 1 m. 



8 Suspension Stability and 
Particle Capture 

8.1 Colloid Stability 

Up to this point we have considered distributed dilute dispersions of colloidal 
size particles and macromolecules in continuous liquid media. Where the 
particles are uncharged and of finite size, they are always separated by a fluid 
layer irrespective of the nature of the hydrodynamic interactions that take place. 
In the absence of external body forces such as gravity or a centrifugal field or 
some type of pressure filtration process, the uncharged particles therefore 
remain essentially uniformly distributed throughout the solution sample. We 
have also considered the repulsive electrostatic forces that act between the 
dispersed particles in those instances where the particles are charged. These 
repulsive forces will tend to maintain the particles in a uniform distribution. The 
extent to which a dispersion remains uniformly distributed in the absence of 
applied external forces, such as those noted above, is described in colloid science 
by the term stability, whereas colloidal systems in which the dispersed material 
is virtually insoluble in the solvent are termed lyophobic colloids. 

In general it is an observed fact that given sufficient time, many two-phase 
colloidal dispersions will change into a smaller number of larger particles, as, 
for example, a suspension of oil droplets in water. This aggregation or 
“coarsening” is a consequence of the fact noted in Section 5.1 that an important 
characteristic in dealing with the microhydrodynamics of colloidal or macro- 
molecular suspensions is the importance of surface forces, which generally 
increase in inverse proportion to the characteristic particle size. Specifically, 
particles may coalesce, wherein two small particles fuse together to form a single 
larger particle, with a reduction in total surface area. The particles may also 
flocculate, wherein they clump together to form a “floc” but do  not really fuse 
into a new particle, although there may be a small area reduction where the 
particles of the floc touch (Hieinenz 1986). The attractive force between 
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particles that gives rise to aggregation is principally a consequence of van der 
Waals surface forces, which become stronger as the particles approach each 
other. If the particles in the solution tend to aggregate, the solution is said to be 
unstable. 

Therefore, whether a colloidal or  macromolecular solution is stable or 
unstable in the absence of hydrodynamic or applied external forces will be a 
consequence of the net interaction between the particles arising from the 
combined attractive van der Waals force and repulsive contribution arising from 
electrostatic forces because of any particle charge. Both of these forces are fairly 
long range. 

Yet another repulsion, steric repulsion, can be associated with the particle 
surfaces being covered through adsorption or chemical reaction, usually by 
long-chain molecules, thus giving the particles a “hairy” surface (Overbeek 
1982).  If the hairs are soluble in the medium, they repel one another and cause a 
steep repulsion between the particles, with a range about the size of the 
randomly coiled hairs. Steric repulsion is important in the stabilization of 
nonaqueous, nonpolar media and will not be discussed further here. 

In order that the particles either repel or  attract each other, they must be 
brought into sufficiently close encounters. This may be a consequence of 
Brownian motion or hydrodynamic transport. However, the solution stability is 
determined by the interactions during these encounters. We therefore first 
examine the nature of the physical-chemical interactions, followed by the 
transport phenomena that can bring about the encounters. Subsequent to these 
discussions we shall consider the combined effects of transport and surface 
interactions. 

Whether the colloidal particles encountering each other will flocculate (or 
coalesce) will generally depend on the net interaction resulting from the 
combined attractive van der Waals forces and repulsive electrostatic forces 
resulting from the overlap of the electric double layers. This theory of colloid 
stability, in considerably more detail than given here, is known as the Derjaguin, 
Landau, Verwey, Overbeek (DLVO) theory of colloid stability (Hiemenz 1986, 
Verwey & Overbeek 1948).  

The energy of repulsion between two spherical colloid particles may be 
estimated by using the electric double layer ideas discussed in Section 6.4. 
However, let us first consider the simple case of the electrostatic repulsive force 
between parallel plates of like surface potential immersed in an infinite reservoir 
of electrolyte of concentration co (Fig. 8.1.1). Each plate will develop its own 
double layer as shown, and a significant interaction will occur if the double 
layers overlap at  a distance approximately equal to the Debye length. Because 
electroneutrality must be maintained in the region between the plates, the 
counterion concentration is greater than that in a single free double layer, and 
the potential does not have a zero value anywhere in the region. By symmetry 
the potential will have a minimum at the midplane halfway between the plates. 

In the plane of symmetry between the parallel double layers, a charged 
particle experiences no electric force since the electric field is zero. The charged 
particle (say ion) concentration a t  this plane, however, is in excess of that in the 
bulk, so there is an excess pressure (osmotic pressure) at this plane compared 
with the bulk, which tends to push the surfaces apart. 



Colloid Stability 239 
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Figure 8.1.1 
layers from opposing plates. 

Schematic of potential distribution resulting from the overlap of the double 

At equilibrium in the absence of flow, the only forces acting are the electric 
force and the pressure gradient, which balance each other to  give 

-Vp + p,E = 0 (8.1.1) 

where E = -V+. For the one-dimensional problem considered, 

- + p F - & = O  dP d 4  
dx 

which from Poisson’s equation becomes 

- - - E - - = O  dP d24 d 4  
dx dx2 dx 

This equation admits the particularly simple first integral 

2 

p - 5 (*) = constant 
2 dx 

(8.1.2) 

(8.1.3) 

(8.1.4) 

which states that the difference between the hydrostatic pressure and electric 
pressure is a constant. The constant can be defined by noting that d4ldx = 0 at 
x = h12 where p = p,, and where the subscript m denotes the midplane. 
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However p,,,, which is unknown, is required to evaluate the repulsive force 
between the plates. To determine this pressure, we need to calculate the 
behavior of the potential from both plates to the midplane. 

Substituting the equilibrium value for p E  from Eq. (6.4.8) into Eq. (8.1.2) 
gives the following differential equation for the pressure as a function of the 
potential: 

dp = 2Fzc, sinh - (2) d4 

The equation is readily integrated to give 

(8.1.5) 

(8.1.6) 

where the constants of integration have been evaluated from the conditions 
p = p o  a t  4 = 0 and p = p ,  at 4 = 4,,l. This pressure difference, which is the 
force per unit area that tends to push the surfaces apart, is the excess (osmotic) 
pressure at the midplane compared with the bulk. The result is still not 
particularly useful, since it is expressed in terms of the unknown potential 
midway between the plates. 

Expanding the pressure 7r for small values of the potential at the midplane, 
we get 

(8.1.7) 

If, in addition, we assume that the surface potential 4w is also small (we have 
generally identified this potential with the potential), we may use the Debye- 
Hiickel result for the potential distribution given by 4w exp(-x/A,). The 
potential at  the midplane is then obtained from the sum of the potentials from 
each of the two opposing plates to give 

(8.1.8) 

from which the force per unit area between the plates (excess pressure) is 

(8.1.9) 

where we have expressed the coefficient of the exponential in terms of the Debye 
length (Eq. 6.4.5). 

The repulsion or attraction between two particles is most conveniently 
characterized in terms of potential energy rather than force. The repulsive 
potential energy (per unit plate area) for the case considered of opposing plates 
of the same charge is simply the integral of the excess pressure from to h (the 
integral of the force over the distance which it acts): 
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h 

V f  = -1- n- dh 

where we note that Vp,' = 0 when h -+ m. Integrating, we obtain 

(8.1.1 0) 

(8.1.1 1) 

where we remind the reader that this expression is only valid for small 4,,, and 
small 4w ( 5  potential). This result shows that the repulsive potential decreases 
strongly with the reservoir electrolyte concentration co, since, from Eq. (8.1.1 l ) ,  
V: - c:'~ exp(-const cAI2), 

The corresponding result for the repulsive potential valid for small $,,, but 
for large 4w ( J  potential) is given by (Overbeek 1972) 

where 

y = tanh( ---) zF4, 
4RT 

(8.1.12a) 

(8.1.12 b) 

Both Eqs. (8.1.11) and (8.1.12) show that the repulsive potential is inversely 
proportional to the Debye length and to exp(hlA,), which characterizes the 
interaction of the "tails" of each plate's surface double layer. A principal 
difference is that at  low surface potential the repulsion is proportional to 4;, 
while at  high surface potential the repulsion is independent of the surface 
potential (tanh - 1)  and is inversely proportional to z2. 

For interacting identical spherical particles with spherical double layers, a 
similar calculation of the repulsive potential can be carried out (Overbeek 
1972). Provided the thickness of the double layers is small compared with the 
particle size, the interaction between the double layers on the spherical particles 
can be assumed to be made up of contributions from infinitesimally small 
parallel rings, each of which can be considered as a flat plate (see Fig. 8.1.2). 
The energy of repulsion between the spherical double layers is then 

0 

Viph = -1 VE'2n-HdH (8.1.13) 

From geometrical considerations for ( h  - h,) / 2  < a, it follows that 
2 H  d H  = a dh, whence 

(8.1.14) 

For small +,,, and small 4tu, we find, upon substituting Eq. (8.1.11) into 
Eq. (8.1.14) and integrating, 



242 Suspension Stability and Particle Capture 

Figure 8.1.2 Geometry for calculation of repulsion between identical spheres. 

".) 
A D  

(8.1.15) 

For small +,n and large +w, we obtain, on substituting Eq. (8.1.12) into Eq. 
(8.1.14) and integrating, the repulsion potential 

(8.1.16) 

As van der Waals postulated, the attractive forces between neutral mole- 
cules also originate from electrical interactions (Hiemenz 1986). Although there 
are several types of van der Waals attractive forces that originate from electrical 
interactions, the most important for colloids is that operating between nonpolar 
molecules. These forces are due to the polarization of one molecule by quantum 
fluctuations in the charge distribution in the second molecule, and vice versa. 
They are known as the London dispersion forces, their origin having first been 
explained by F. London in 1930. 

The London attractive energy between two molecules is long-range and 
may be written in the form 

(8.1.17) 

The distance Y is the separation distance between the molecular dipole moments, 
and the quantity b,, is defined in terms of the material properties, especially the 
optical properties. Note that the attractive energies corresponding to all of the 
van der Waals forces are inversely proportional to Y', but, as noted above, the 
London force generally dominates. 

The total attractive energy for any geometry is obtained by integrating 
over pairs of volume elements dV,  and dV2 and is given by 
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where n 1  and n2 are the number of molecules per unit volume, and A is the 
Hamaker constant. The Hamaker constant has a typical value between 
and J with a range of an additional order of magnitude at  the low and 
high ends. 

J.H. De Boer and H.C. Hamaker computed the London interaction 
between a pair of semi-infinite plates and between spherical particles. They 
showed that, despite the relatively long-range attractive nature of the force 
between molecular pairs, the total attractive force between the bodies decays 
much less rapidly. 

For two parallel semi-infinite plates the attractive force between the plates 
was found, after integrating Eq. (8.1.18), to be 

A 
127rh2 

v;' = -- 

Here, the attractive force is seen to fall off as the square of the 
distance, a consequence of the fourfold integration. For two equal 
radius a, where h,,<a, it was shown that 

(8.1.19) 

separation 
spheres of 

(8.1.20) 

This result can be easily obtained by substituting Eq. (8.1.19) for the attractive 
force between parallel plates into Eq. (8.1.14) and integrating, rather than 
integrating Eq. (8.1.18) directly and simplifying the result for small particle 
spacing. Clearly, as noted above, the attractive force in both cases falls off much 
more slowly than the Y - ~  behavior for a molecular pair. 

The total potential energy of interaction, say between two spherical 
particles, is obtained by summing the attractive and repulsive energies. This is 
illustrated schematically in Fig. 8.1.3, where three different total interaction 
energy curves are shown, each having been obtained by summing an attraction 
curve V, with three different electrostatic repulsion curves. 

The repulsive energy is an exponential function of the interparticle dis- 
tance with a range of the order of A,, and the attractive energy decreases as an 
inverse power of the interparticle distance. Therefore, the London force will 
predominate at  small and large interparticle distances, whereas at  intermediate 
distances double layer repulsion dominates. 

In Fig. 8.1.3 the curve V(1) represents a well-stabilized solution with a 
repulsive energy maximum. The curve V(3) represents a situation where the 
colloidal solution is unstable and rapid flocculation will occur, double layer 
repulsion not dominating a t  any interparticle distance. The curve V(2) repre- 
sents the transition between stability and flocculation at  the primary maximum. 
If the potential energy maximum is large compared with the thermal energy kT 
of the particles, the system should be stable; otherwise it should flocculate. The 
height of the energy barrier depends on the 6 potential and the range of forces 
o n  the Debye length. For small 6 potentials the repulsion decreases as the 5 
potential decreases and as the Debye length decreases. Another feature of the 
potential energy curves is the presence of a secondary minimum at  relatively 
large interparticle distances. If this minimum is relatively deep compared with 
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Figure 8.1.3 
tion curve with different repulsion curves (after Shaw 1980). 

Total interaction energy curves obtained by the summation of an attrac- 

kT, it should give rise to a loose, easily reversible form of flocculation (Shaw 
1980). 

Another feature of two-phase colloidal systems (lyophobic colloids) is their 
sensitivity to flocculation by small amounts of added electrolyte. The electrolyte 
causes the diffuse part of the double layer to compress. When the double layer is 
reduced in thickness, the colloid flocs because the particles approach close 
enough for London forces to take over. 

The concentration of a nonadsorbing indifferent electrolyte just sufficient 
to rapidly flocculate a lyophobic colloid is known to be strongly dependent on 
the charge number of the counterions (here, the ions of charge opposite to that 
of the colloid). However, the colloid stability is largely independent of the 
charge number of the coions and of the concentration of the colloid. These 
observations are embodied in what is known as the Schulze-Hardy yule, which 
states that the valence of the counterions has the principal effect on the stability 
of a lyophobic colloid. 
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The essentials of the Schulze-Hardy rule are readily derived from the 
DLVO theory presented in this section. With reference to Fig. 8.1.3 i t  can be 
seen that the primary maximum of the curve V(2) is the demarcation point 
between stability and instability. At that point 

V=V,+V,=O 

and 

dV dV, dV, 
dh dh dh 

+ - = o  - 

(8.1.21 

(8.1.22 

Using the repulsive and attractive potentials derived for identical spherical 
particles with large surface potentials, as given by Eqs. (8.1.16) and (8.1.20), 
respectively, we find from the condition of the total potential being equal to zero 
that 

4RTy aA 
= O  (8.1.23 

The condition of zero slope (Eq. 8.1.22) gives 

(8.1.24 

From the last equation the location of the primary maximum is seen to be 
at  an interparticle distance h, = A,. Inserting this result into Eq. (8.1.23) gives 
the critical Debye length by the proportionality 

(8.1.25) 

But from the definition of the Debye length, A, - (cz’)-~’’ , from which the 
criterion for the critical flocculating electrolyte concentration becomes 

Y 4  
c‘nt - &z (8.1.26) 

For dilute aqueous solutions at  25°C the coefficient in the proportionality is 
3.8 x J’ mol mP3, with the Hamaker constant in joules and the con- 
centration in mol m-3. 

At high potentials y approaches unity, so the theory predicts that the 
critical flocculating concentration of indifferent electrolytes containing counter- 
ions with charge numbers 1, 2, and 3 will be in the ratio 1 : 2 - 6 : 3 - 6  or 
100 : 1.56 : 0.137. In other words, successively lower concentrations of salts of 
Na’, Ca2+, A13+ are needed to cause spontaneous flocculation. Experiment 
closely bears out the theoretical results given (Shaw 1980, Hiemenz 1986). We 
also note from these results that the flocculating concentration strongly depends 
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o n  the 6 potential at  low potentials but is practically independent of it at  high 
potentials. Moreover, the flocculating concentration is independent of the 
particle size for a given potential. 

8.2 Brownian and Velocity Gradient Flocculation 

In the last section we wanted to know whether two particles will flocculate on 
the basis of physical-chemical considerations when they are brought together. 
However, if the suspended particles in solution are not completely stabilized, 
then the rate at  which they will flocculate must depend on the frequency with 
which they encounter one another as a consequence of the fluid and particle 
motions. 

Among the primary collision mechanisms is Brownian flocculation, also 
termed perikinetic flocculation, which dominates for submicrometer particles a t  
relatively high number densities. The second principal collision mechanism is 
that of velocity gradient flocculation, also termed orthokinetic flocculation, 
which dominates for particles of micrometer size and larger. Evidently, the 
presence of any stabilizer in the solution will reduce the number of particle 
encounters and subsequent floccing, as discussed in the last section, resulting in 
slow flocculation. In our discussion we shall separate the transport and stability 
problems by assuming that the suspension is completely destabilized, so floccu- 
lation occurs on encounter (rapid flocctrlation). Our concern here is with the 
effect of the particle motion alone on the number of encounters between the 
suspended particles. 

Brownian Flocculation 

We begin by examining the rate of collision of suspended spherical particles in a 
static fluid due to Brownian motion. This theory was first put forward by the 
great Polish physicist M. Von Smoluchowski, to whom we have often referred. 
In consequence of the equivalence between diffusion and Brownian motion, we 
consider the relative motion between the particles as a diffusion process. The 
particles are assumed to be in sufficiently dilute concentration that only binary 
encounters need be considered. To further simplify the calculation, we consider 
the suspension to be made up of only two different-sized spherical particles, one 
of radius a ,  and the other of radius a,. 

Let us consider the diffusional flux of particles a, diffusing toward a 
particle of radius a , ,  which we take to be our “test” particle (see Fig. 8.2.1). 
That is, we consider the sphere of radius a ,  to be fixed at  the origin of the 
coordinate system in an infinite medium containing suspended spheres each of 
radius a,.  The particles of radius a2 are in Brownian motion and diffuse to the 
surface of a,, which we assume to be a perfect sink. Clearly, any particle a ,  will 
suffer a collision with the test particle a,  whenever the center of a, approaches a 
distance a, from the surface of the a,  particle. Therefore the test molecule a,  
carries a sphere of influence of radius a ,  +a,. By this argument the con- 
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~ \ . /  / 

Figure 8.2.1 
particles of radii a,. 

Sphere of influence of fixed test particle of radius a,  among moving 

centration of a, particles vanishes a t  the radius of the influence of the test 
sphere. 

For particles of uniform radius a the characteristic time for Brownian 
diffusion is 

(8.2.1) 

With the particle radius a - 0.1 p m  and an aqueous solution, this time is 
approximately 5 x s at standard conditions. Therefore, if we examine the 
flocculation process for times larger than this, we may consider the diffusion 
process as a steady-state one for which we may write 

Y dr  
(8.2.2) 

Here, n represents the local number density of the particles of radius a,, and D,, 
is the Brownian diffusion coefficient describing the relative motion of the two 
particles. However, since the motion of the particles is assumed to be in- 
dependent, it is readily shown that D, ,  = D ,  + D ,  (Friedlander 1977). 

The boundary conditions are that at  large distances N approaches the bulk 
concentration of the particles of radius a, (denoted by n,),  and, as noted above, 
the particles vanish at  the radius of the sphere of influence of the test particle; 
that is, 

Integrating Eq. 
obtain the relatively 

n = n ,  asv-+w (8.2.3a) 

n=O at Y = a ,  + a, (8.2.3b) 

(8.2.2) subject to the boundary conditions Eq. (8.2.3),  we 
simple solution for the number density 

(8.2.4) n = n,(l- --) a,  + a2 
Y 
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Now the flux of a, particles arriving at  the sphere of influence of the a ,  particle 
is simply D l Z ( d n / d r ) l = R l + 1 1 2 .  The total frequency of arriving particles is therefore 

WIZ = D,;(4nr’ ”) dr  r = a l + a 2  (8.2.5) 

When this frequency is multiplied by the number density of a ,  test particles, this 
will give the collision frequency (collisions m-3  s - I )  of a, particles with the test 
particles a , ,  or 

For a monodisperse system of equal-sized particles, the self-collision 
frequency requires dividing by 2 to avoid double counting, once as a “diffusing” 
particle and once as a “test” particle. In this special case Eq. (8.2.6) reduces to 

4 kTnf  p,, = 8.rrD,a,n, = - - 
3 P  

(8.2.7) 

where i = 1 or 2 and where we have substituted for D, the Brownian diffusion 
coefficient given by the Stokes-Einstein equation. 

For a simple calculation of the number concentration evolution in a batch 
experiment due to Brownian flocculation of a destabilized suspension, we may 
suppose that the particles grow with uniformly equal size, which is determined 
by constant total volume distributed over all the particles. Dropping the 
subscript on n, we then have from Eq. (8.2.7) that the rate of decrease of the 
initial number density distribution is described by second-order kinetics; that is, 

dn 4 kT 
d t  3 p 

n - (8.2.8) 

With the initial condition n = l z o  a t  t = 0 the equation is readily integrated to 
give 

- 1  

n = n,(t + 

where 

4 kT 
r =  (- - no)  

3 P  

(8.2.9a) 

(8.2.9b) 

The characteristic time T is known as the flocculation time and is seen to be the 
time for the concentration to halve itself. 

Gradient Flocculation 

In the Brownian flocculation example the effect of particle collisions due to fluid 
mixing was not considered. The simplest example one might consider is that of 
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constant laminar shear with a linear velocity profile (Levich 1962). Such a flow 
may be associated with a Couette motion or the region near the wall in a steady 
laminar flow. Neglecting inertia, the particles follow the straight streamline 
paths; then if a particle is moving in a region of higher velocity and another in a 
region of lower velocity and if the distance between the particles does not 
exceed the sum of their radii, the particles can collide. The collision takes place 
because the particle in the higher-velocity layer overtakes the particle in the 
lower-velocity layer below it. This case was also first analyzed by Von 
Smoluchowski. In calculating the collision frequency, we neglect the effect of 
Brownian motion and the hydrodynamic interaction between the particles. 

Again consider a test particle of radius a l ,  which we suppose to be 
stationary, with the particles of radii a2 moving relative to it. The geometry is 
shown in Fig. 8.2.2, with the test particle of radius a,  taken to have its origin at  
the center of the coordinate system. The sphere of influence around the test 
particle has a radius a l  + u2.  A collision is possible if the distance along the y 
axis between an a, particle and the test particle is 5 (a ,  + a,)sin 8. 

The velocity of the particles a, at any point in the shear layer relative to 
the test particle may be written 

(8.2.10) 

N o w  the number of a, particles entering the strip dy per unit time is given by 

dw,, = n2242(a, + a z )  cos 8 d y  (8.2.1 1 )  

The total collision frequency with the test particle (collisions s-’)  is therefore 

Front view 

e 
Side view 

Figure 8.2.2 
a, is stationary at origin and sphere of influence is of radius a, + a,. 

Geometry for flocculation in a uniform shear flow. Test particle of radius 
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a1 + a 2  

n2u2(a,  + a,) cos e d y  (8.2.12) 0 1 2  = 2 Jo 

where the factor of 2 multiplying the integral takes into account the flow into 
the upper hemisphere from left to right plus the flow into the bottom hemi- 
sphere from right to left. 

From Eq. (8.2.10) u = +y, and from the geometry y = ( a ,  + a,)sin 0, from 
which the total frequency of a2 particles entering the sphere of influence may be 
written, 

o,, = 4n,+(a, + a213 low’, cos’ 6 sin 0 dH (8.2.13) 

Multiplying this frequency by the number density of test particles a ,  and 
integrating results in the following expression for the collision frequency per 
unit volume of a ,  particles with all the test particles a , :  

P,, = $ n , n , ~ ( a ,  + a213 (8.2.14) 

As in the Brownian motion case, and for the same reason, to obtain the 
self-collision frequency for a monodisperse system requires dividing the above 
result by 2 after setting 1 = 2 = i: 

(8.2.15) 

A simplified calculation of the number concentration evolution with time 
due to flocculation by laminar shear may be carried out by assuming a total 
constant solids volume fraction 

4 = 4n-a3n (8.2.16) 

to be uniformly distributed over n equal-sized particles, where the subscript i is 
dropped. In this case from Eqs. (8.2.15) and (8.2.16) the rate of decrease of the 
initial number density distribution is given by the equation 

dn  4 . 
dt  n- 

_ _ -  - - r4n (8.2.17) 

We note that in contrast to Brownian flocculation, which was described by 
second-order kinetics, shear flocculation follows first-order kinetics. 

With the initial condition n = no at t = 0 Eq. (8.2.17) can be integrated to 
give 

n = no exp( - 4 )  ( 8.2.1 8 a) 

where 
f l  

q - =  - 
4Y4 

( 8.2.1 8 b) 
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Here, the characteristic flocculation time is seen to be inversely proportional to 
the velocity gradient and the solids volume fraction. 

We may compare the flocculation rates due to shear with those due to 
Brownian motion by ratioing the right side of Eq. (8.2.17) to the right side of 
Eq. (8.2.8). The result is 

(8.2.19) 

where we have replaced by $n-u3n. The ratio is seen to increase linearly with 
the shear rate but as the cube of the particle size. Friedlander (1977) has 
considered simultaneous shear and Brownian motion by the flocculation rates 
ushear and uBrown to be additive and shown good agreement with experiment, 
although such a linearly independent behavior is open to question (Schowalter 
1984). It is also to be observed that Eq. (8.2.19) is just a Peclet number defined 
as the ratio of the Brownian time scale to shear rate time scale (Eq. 5.3.25). 

8.3 Particle Capture by Brownian Diffusion and 
Interception 

An important means by which small particles in suspension are separated from 
solutions is through capture by collectors, which may be larger particles, or 
granular, porous, or fibrous media. An example of such collection is filtration. 
The separated solids may be collected as a cake on the surface of the filter 
medium (much like ultrafiltration), and this is termed cuke filtration. Alter- 
natively, the solids may be retained within the pores of the medium, and this is 
termed depth filtration. It is important to recognize that particle collection in a 
porous medium is not simply a matter of “straining”; that is, the capture is not 
purely steric, since, in filtration, particles are captured that are much smaller 
than pores of the medium. The capture of small suspended particles from fluids 
in laminar flow by a collector is a consequence of the simultaneous action of 
fluid mechanical forces and forces between the particle and collector, such as 
van der Waals or  electrostatic forces. I t  is the combined forces, at  least close to 
the collector, that govern the particle trajectories and determine whether a 
particle will be transported to and retained a t  the surface of a collector that is 
fixed in the flow (Spielman 1977). 

Following Spielman and the aims of this book, our discussion is confined 
to the capture of particles in liquid suspension from low-speed laminar flows, 
where the particles are generally small compared with the collector. The two 
principal transport mechanisms are (a) Brownian diffusion for submicrometer- 
size particles, and (b)  interception of micrometer-size, nondiffusing, inertia free 
particles with the collector as a consequence of geometrical collision due to 
particles following fluid streamlines. Inertial impaction, which can be important 
for gas-borne particles, is usually unimportant for particles in liquids, because 
the particle-fluid density difference is smaller and the higher viscosity of liquids 
resists movement relative to the fluid (Spielman 1977). In this section we shall 
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consider only the hydrodynamic transport problems of Brownian diffusion and 
geometrical interception, without regard to the surface forces that enter when a 
particle comes in close enough proximity to the collector that surface forces 
become important. This latter problem is considered in the following section. 

Brownian Diffusion 

We treat first the capture by a collector of submicrometer-size particles undergo- 
ing Brownian motion in a low-speed flow of velocity U. The collector is taken to 
be a sphere of radius u and is assumed to be ideal in that all of the particles that 
impinge on its surface stick to it (Fig. 8.3.1). Because the Brownian particle 
diffusivities D = kT/6.n,uap, where up is the particle radius, are typically about 
a thousand times smaller than the molecular diffusivities, the diffusion Peclet 
number ( U a / D )  is generally very large compared with unity. The diffusive flux 
of the particles to the surface is therefore governed by the steady, convective, 
diffusion boundary layer equation, with the particles treated as diffusing 
“points.” 

We may write the convective diffusion boundary layer equation in spheri- 
cal coordinates ( r ,  0 )  in the form 

where the boundary conditions for an ideal collector are 

(8.3.1) 

(8.3.2a) 

(8.3.2b) 

Here, we impose the conditions of a perfect sink a t  the surface, while at  large 

Figure 8.3.1 Brownian diffusion layer around a spherical collector. 
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distances from the surface the concentration is taken to approach the bulk 
suspension concentration po. 

In writing Eq. (8.3.1) as above, we have made the usual boundary layer 
approximations in neglecting derivatives on the right side with respect to 8 
compared with the radial derivatives. The transverse curvature term (2 i r )  Jp i d r  
has also been neglected compared with d Z p / d r 2 ,  based on the assumption that 
the concentration boundary layer thickness is small compared with the particle 
collector radius. In defining the flow about the collector, that is, ti, and t ig ,  we 
will follow Levich (1962) and assume it is a low Reynolds number, inertia free, 
Stokes flow. This will generally be true because of the large Schmidt numbers. 
As a consequence of the assumptions made, it is shown below that the 
mathematical characteristics and solution are quite similar to those for the 
developing diffusion layer in a channel flow withrapidly reacting walls (Section 
4.3). 

The well-known solution for Stokes flow about a sphere is (see, e.g., 
Landau & Lifshitz 1987) 

t i , = - u c o s e  I - - - + - ,  i 3 a  2 r  2 r  l a ' )  
(8.3.3a) 

(8.3.3 b) 

where for convenience 8 is chosen to be measured positive clockwise so that the 
forward stagnation point is at  8 = 0. Employing the solution in this form is, 
however, both complicated and unnecessary since, at  least over the forward 
portion of the sphere, the diffusion layer thickness is small compared with the 
characteristic distance over which the sphere influences the flow (the order of 
several body radii). This is a statement of the fact that the velocity about the 
sphere approaches the free stream value U slowly. Our interest therefore centers 
on the velocity field near the surface, where the radial distance r is close to the 
sphere radius a. In fact, it is precisely in this region where the Stokes solution is 
most accurate for finite but low Reynolds numbers. 

By setting in Eqs. (8.3.3) 

- = I + -  r Y 
a a 

and expanding for y l a  1, it can be shown that, to first order, 

2 

ti =-qq u c o s o  
2 a  

3 Y  u g =  + - 2 a  ( - ) u  sin 

(8.3.4) 

(8.3.5a) 

( 8.3.5 b) 

With the velocity field so defined, Eq. (8.3.1) can in principle be solved subject 
to the boundary conditions of Eqs. (8.3.2). 
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Levich (1962) showed that a similarity solution exists to the problem as 
posed. We present his solution in a somewhat different form with the aim of 
paralleling our earlier treatments of convective diffusion layers and, in par- 
ticular, the developing diffusion layer in a channel flow with a rapidly reacting 
wall. In direct analogy with Eq. (4.3.4) we introduce the new dependent 
variable 

P 
PO 

p ' y q )  = - (8.3.6) 

where the independent similarity variable r), in partial analogy with Eq. (4.3.5), 
is 

1.3 U \' ' 3  
r) = y sin 0 (' Da2 1; sin2 0 do) 

: 8.3.7) 

The functional dependence upon s in0  is not self-evident but will not be 
discussed further here. Instead, the reader is referred to Levich's treatment in 
Section 14 of his book, where, with some algebra, the form of r] as given by Eq. 
(8.3.7) can be shown to be appropriate from his formulation. 

With manipulation, Eqs. (8.3.1) and (8.3.5) and the boundary conditions 
Eqs. (8.3.2) are reducible to the form 

(8.3.8) 

The differential equation may be seen to be exactly the same as Eq. (4.3.7) 
governing the developing diffusion layer in channel flow, with the boundary 
conditions the same as those appropriate to the case of a rapidly reacting wall, 
for which the solution is given by Eq. (4.3.19). 

The diffusional mass flux to the collector from the solution of Eq. (4.3.19) 
is 

(cf. Eq. 4.3.17), where the integral over 0 appearing in the definition of r) has 
been evaluated. The above result differs slightly in the value of the numerical 
coefficient from that given by Levich, a consequence of a slight difference in the 
evaluation of a Gamma function for which we obtain 1.17 in place of Levich's 
1.15. From the result for the flux and the Nernst relation j = Dp,/6, the 
diffusion layer thickness is estimated to be (cf. Eq. 4.3.18) 
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6, - 1.2918 - (sin 2 8 )  /2]1’3 
a sin 8 
- - (8.3.11) 

where Pe = Ua/D.  
The functional dependence on 8 in Eq. (8.3.10) is (3 /2)”’  at  the stagna- 

tion point 8 = 0, showing the mass flux to be highest there, drops to ( 2 / ~ ) ” ~  at 
8 = rr/2, and to 0 a t  8 = T. Correspondingly, from Eq. (8.3.11), this shows that 
the diffusion layer thickness increases with 8 from a finite value a t  the stag- 
nation point and becomes infinite at  8 = T. Actually neither 6, becomes in- 
finite nor does j go to zero at  8 = T. The anomaly arises from the assumption 
made in the analysis that 6,e a, whereas the solution shows that for 8 close to 
7~ the diffusion layer thickness becomes comparable with the collector radius 
and the approximation breaks down. However, for 8 - rr it is evident from the 
physics that there is little contribution to the total mass flux to the collector. 

The particle mass flow rate to the spherical collector (kgs-’)  can therefore 
be expressed as 

Isph = j d A  = 27raz lln j sin 8 d8 (8.3.12) 

Inserting the flux value given by Eq. (8.3.10) and evaluating the definite integral 
over 8 give the following result for total mass collected by the sphere per unit 
time: 

Zsph = 7.84pOaD - 
(UDa)”l 

(8.3.13) 

The slight difference in the numerical coefficient from that given by Levich is for 
the reason described above in connection with the result of Eq. (8.3.10). 

It is conventional to define a dimensionless collection efficiency by compar- 
ing the actual diffusional mass flow rate to the mass flow rate of particles to the 
collector for straight particle trajectories, that is, the mass “swept out” by the 
projected cross-sectional area of the collector. From this definition the spherical 
collector efficiency ESP,, is 

Inserting the result of Eq. (8.3.13) with Pe = Ua/D gives 

2.50 
Esph = pe2/3 

(8.3.14) 

(8.3.15) 

which shows that the collection efficiency decreases with increasing particle 
radius as 

The diffusional flow rate to a cylindrical collector, whose axis is normal to 
the flow direction, has also been determined by a procedure similar to that 
outlined for the spherical collector. Although no steady, uniformly valid, inertia 
free, Stokes solution exists for an unbounded medium, a solution valid near the 

(since D = kT/6mpap).  
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surface can be obtained by using coaxial cell models in which either the shear or  
vorticity vanish at  the finite outer cell boundary. This models, for example, the 
interference between cylindrical arrays, and we shall discuss this approach 
further in Section 8.6  when we consider filtration. The result for the diffusional 
mass flow rate per unit length of cylinder is (Spielman 1977, Levich 1962, Eq. 
(4.3.12) with exponent 1 / 3 ) .  

I, , ,  = 4.63p,(UaD2)li3 

From the above the corresponding collection efficiency for a cylinder 
normal to the flow, which is conventionally defined for the two-dimensional 
case considered by 

is 

2.32 
E c y ,  = - 

pe2I3 

(8.3.17) 

(8.3.18) 

The similar behavior of the cylindrical and spherical collection efficiencies is 
evident. It is a consequence of the similar behavior of the velocity field near the 
surface. 

lnterception 

Capture by interception assumes that the center of a small nondiffusing 
spherical particle follows an undisturbed fluid streamline near a larger collector 
until the particle and collector touch, whereupon the particle is retained by 
adhesion. We have illustrated this for the case of a cylinder in Fig. 8.3.2, taken 
from Spielman (1977). This simple model neglects any lubrication effects 
between the particle and the collector, as well as surface attraction. Electro- 
kinetic phenomena would also need to be considered if the particles and 
collector were charged. 

Let us again first consider collection by a spherical collector assuming the 
flow to be an inertia free, Stokes flow. The stream function corresponding to the 
velocity field, defined by Eqs. (8.3.3), is 

(8.3.19) 

Expanding the solution for the region near the surface, using r l a  = 1 + y / a  with 
y la  @ 1, we obtain 

(8.3.20) 2 . 2  2 . 2  T = $ U y  sin o = $ u ( Y - ~ )  sin o 
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Figure 8.3.2 Trajectories for interception by a cylinder. [After Spielman, L.A. 1977. 
Particle capture from low-speed laminar flows. Ann. Rev. Fluid Mech. 9, 297-319. 
Copyright 0 1977 by Annual Reviews Inc. With permission.] 

The mass flow rate to the sphere is found by calculating the rate at which 
mass impinges on the sphere between the stream surface v' = 0 and the stream 
surface defined by the loci of limiting trajectories, illustrated in Fig. 8.3.2 for the 
cylindrical case. The loci of limiting trajectories are determined by setting 
r = a + u p  and 8 = rrI2, whence 

yim = (8.3.2 1 ) 

From the definition of the axisymmetric stream function and elementary con- 
tinuity considerations, the volume flow rate between any two stream surfaces is 
simply 2rrAV. It follows that the mass flux of particles intercepted by the 
spherical collector is 

lsph = 2rp0AV = i .rrpoUap 2 (8.3.22) 

From the definition Esph = IsPh/na2Ul.'o, the efficiency of capture by the spherical 
collector is (Yao et al. 1971) 

2 
3 U P  

Esph = 5 (,) (8.3.23) 

A similar calculation can in principle be carried out for a cylindrical 
collector. However, a difficulty arises in that there is no solution of the inertia 
free, Stokes equation for an infinite cylinder in an otherwise unbounded flow. 
This was already observed in Section 5.1. Nevertheless we can illustrate the low 
Reynolds number behavior by using the so-called Stokes-Oseen solution for 
uniform flow of velocity U past an infinite circular cylinder of radius a whose 
symmetry axis is perpendicular to the flow. Oseen's method accounts in an 
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approximate way for inertia forces by incorporating the inertia term in the 
linear form U -Vu. The addition of this inertia term as a correction to the Stokes 
equation permits a solution of the problem for flow past a cylinder. 

H. Lamb was the first to give a solution to this problem (see Batchelor 
1967), from which the stream function near the surface can be shown to have 
the approximate form 

where 

- 1  

A,,, = [2.00 - In( y)] 

(8.3.24a) 

(8.3.24b) 

The factor 2.00 is not a complete integer but is derived from the natural 
logarithm of 7.4. Note that Acyl is a parameter that characterizes the flow model 
and is a function of the Reynolds number Re = 2aU/v. As we discuss in Section 
8.5, for an assemblage of cylinders where inertia free solutions can be obtained, 
ACyI  can be shown to be a function of the volume fraction of the cylinder 
assemblage. The solution given by Eq. (8.3.24) is appropriate for Reynolds 
numbers based on the cylinder diameter of around 1. 

Our result for the collector efficiency, using the stream function from 
above and the definition ECyI = 1cy,/2aUp,, is 

2 

E‘,l = A C Y I  ( :) (8.3.25) 

The distance Ecyla of the limiting trajectory from the axis O = 0 as Y-+ w, as 
shown in Fig. 8.3.2, follows directly from the definition of the stream function 
and the fact that $,i, = E,,,aU. Note that the corresponding limiting trajectory 
distance for the spherical collector is E$a. 

As with diffusion, the same behavior with particle radius is found for the 
spherical and cylindrical collection efficiencies. This is again a consequence of 
the similarity of the velocity fields near the collector surfaces. However, in 
contrast to the diffusion collection efficiency, which decreases with increasing 
particle radius as the interception collection efficiency increases with 
increasing particle radius as a t .  In Fig. 8.3.3 we have sketched a “typical” 
behavior of the two collection efficiencies with particle radius for a small 
spherical collecting particle in water at  20°C. For the case of simultaneous 
diffusion and interception the sum of the two efficiencies is also drawn in. 

I t  may be observed that the spherical collection efficiency for both 
diffusion and interception satisfies the general functional form 

E,,,(?)Pe = f a [ (  2 ) 3 P e ]  (8.3.26) 

A similar functional relation holds for cylinders with  la)^ multiplied by Acy,. 
This general relation can be derived from the appropriate boundary layer 
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Figure 8.3.3 
function of particle radius for a spherical collecting particle in water a t  20°C. 

Behavior of Brownian diffusion and interception collection efficiencies as a 

diffusion equation by nondimensionalization and order-of-magnitude considera- 
tions. The important key is the observation first made by S.K. Friedlander that 
Brownian diffusion of “point” particles and interception are limiting cases of 
the diffusion equation. The principal difference is that in the interception case, 
p = 0 at the collision envelope Y = a + u p  rather than at  the collector surface 
itself (see Spielman 1977). 

8.4 Particle Capture with Surface Forces 

In the preceding section our analysis for Brownian diffusion assumed the 
particles were diffusing points, whereas for interception the center of a particle 
of finite size was assumed to follow the undisturbed streamline near a large 
collector. In both cases, no other forces were considered to act on the particles, 
and when they struck the collector it was assumed that they adhered. In reality, 
however, even in the absence of inertia there may be other external forces acting 
on the particles, including London forces of attraction, gravitational hydro- 
dynamic interactions between the particle and collector, and double layer 
repulsive forces. 

Inclusion of the forces mentioned can considerably complicate any detailed 
mathematical solutions. For that reason, in what follows we shall not consider 
Brownian motion but discuss only the case of interception, so the particles 
considered are typically greater than about 1 p m .  For interception alone it is 
somewhat easier to visualize the effect on the collection efficiency of externally 
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applied forces. We shall further simplify the problem by considering the particles 
to be uncharged and neutrally buoyant with only London attraction and 
hydrodynamic interactions considered. 

The particles are assumed to be small compared with the collector, which 
is taken to be a cylinder, so the flow field around the collector is disturbed only 
in the immediate vicinity of the surface; at  several particle diameters away the 
particle centers move along undisturbed streamlines, as in o u r  previous discus- 
sion of interception. At very close approach of the particles, where there is some 
disturbance of the flow, the relatively large radius of the cylindrical collector 
allows it to be treated as a plane wall. For the most part, to simplify the 
analysis, we consider the particles to be sufficiently far from the collector surface 
that the low Reynolds number, Stokes-Oseen flow field given by Eq. (8.3.24) is 
undisturbed. A sketch of the geometry and of the component flows for the 
undisturbed Stokes-Oseen flow around the cylindrical collector is shown in Fig. 
8.4.1 (Spielman & Goren 1970). Although our treatment generally concentrates 
on weak hydrodynamic interactions, it nevertheless follows the general pro- 
cedure laid out by Spielman & Goren (1970), who considered both London 
attraction and the full range of hydrodynamic interactions. 

The radial hydrodynamic component ( y  component) of the force is 
denoted by F,, and represents the net externally applied hydrodynamic force on 
the particle resulting from the particle being driven toward (or away from) the 
collector by the external flow (undisturbed or disturbed) plus any negative 
resistive “lubrication” force arising from a close approach of the particle to the 
collector. The attractive molecular London force acting along the line of centers 
is denoted by FA, (Ad denotes adhesion). Because of the linearity of the 
Stokes-Oseen equation, the velocity fields and associated forces may be super- 
posed. 

From Eq. (8.3.24) for the Stokes stream function near a cylinder, the 
undisturbed velocity field is easily shown to be resolvable into two flows. One is 
a planar stagnation-type flow shown in Fig. 8.4.1B that is associated with 
the velocity component at  infinity along the line of centers of the cylinder 
and particle; the other is a shear flow normal to the line of centers shown in 
Fig. 8.4.lC. The respective expressions valid for the cylinder radius 

2 112 
(x’ + y ) % ap,  where up is the particle radius, are 

(8.4.1) 

us,, = - 2u A,,, sin 0, yi, 
U 

(8.4.2) 

Here, y = Y - u and x = u(0 - O,), where 0 ,  is the angle of the particle from the 
forward stagnation point. As shown in Fig. 8.4.1A, the particle center at x = 0 is 
located at y = yp = up + h, where h is the gap distance along the line of centers. 

Both the hydrodynamic and London forces are additive so that the net 
externally applied radial force F,, shown in Fig. 8.4.1A, is given by 

(8.4.3) 
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(A) Particle moving under applied force 

(B) Stationary particle 

(C) Freely moving particle 

Figure 8.4.1 Particle motion and resolution of undisturbed Stokes-Oseen flow about a 
larger cylindrical collector. [After Spielman, L.A. & Goren, S.L. 1970. Capture of small 
particles by London forces from low-speed liquid flows. Environ. Sci. Technol. 4, 
135-140. Copyright 1970 American Chemical Society. With permission.] 

From the inertia free equations of motion and the boundary conditions 
that the fluid velocity vanishes a t  large distances from the particle and on the 
collector surface, it can be shown from dimensional considerations that the 
force Fn is expressible in the general form 

Here, ur  is the radial particle velocity with 
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dy, dh 
I d t  dt  

v = - = -  (8.4.5) 

and f , (h la,)  is a universal function of the dimensionless gap width. 

Stokes’ law; thus 
When h + up,  the particle is far from the collector and must therefore obey 

f,( = 1 for h 9 up (8.4.6) 

O n  the other hand, when h + up,  the particle is very close to the collector, and it 
was shown by Charles & Mason (1960) that 

(8.4.7) 

This “lubrication” result was obtained by assuming a spherical particle ap- 
proaching a stationary plane surface at  constant velocity under the action of a 
constant applied force. The fluid between the spherical particle and the surface 
is “squeezed out” radially in the direction essentially parallel to the plane 
surface. In their calculation, Charles & Mason approximated the sphere by a 
parabola of the same radius as the particle at  the apex. 

The London attractive force between a sphere and a plane is given by 

where A is Hamaker’s constant. When the particle is far from the collector, the 
function f,,(hlu,) reduces to 

(8.4.9) 

When the particle is close to the collector, 

(8.4.10) 

The hydrodynamic component of the net force F,, is obtained, as shown in 
Fig. 8.4.1B, by considering a second flow in which the particle is held stationary. 
In this “local” flow the fluid velocity vanishes on the collector surface and on 
the particle, while far from the particle the velocity approaches the stagnation 
flow behavior characterized by Eq. (8.4.1 ). From dimensional considerations 

6 r p a ;  

a2 
F =-- UA,,, cos tIp f i  St (8.4.1 1) 

where f 2 ( h / a , )  is also a universal function of the dimensionless gap width. 
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In the case where the particle is far from the collector (h  % a p ) ,  without 
London attractive forces, Stokes’ law is applicable, and from Eqs. (8.4.4) and 
(8.4.6) we have 

F ,  = F,, = 6rryapv ,  (8.4.12) 

The radial velocity component from Eq. (8.4.1) is 

2 

cos 0, ( h  + up)’ = U A C y I  cos OD( t) v, = - W,I 
a’ 

(8.4.13) 

Note that this result is also obtainable directly from the solution for the 
stream function near the surface $ = ( U A c y l / a ) ( r  - a)’sin 8 (Eq. 8.3.24) with 
v, = - ( l /r)(@/d8).  Combining Eqs. (8.4.11) to (8.4.13) gives 

(8.4.14) 

The analysis of the case where the particle is close to the collector is 
somewhat more complicated, with f, approaching a constant. Goren ( 1970) has 
solved this problem and found 

f2( = 3.2 for h 9 a ,  (8.4.15) 

From the above results the hydrodynamic force Fs, is seen to be directed along 
the inward normal to the cylinder on the upstream side and along the outward 
normal on the downstream side. 

The parameter governing the relative importance of the London attractive 
force to the hydrodynamic interaction force may be obtained simply by taking 
the ratio of Eq. (8.4.8) to Eq. (8.4.11) to give 

where 

(8.4.16) 

(8.4.17) 

Here, NTi is a dimensionless number termed the adhesion group. Clearly the 
larger the value of the adhesion group the more dominant is the London 
attractive force for a fixed gap width and particle location. On the other hand, 
for smaller values of A!:; hydrodynamic interactions dominate. 

In the limit of large values of the adhesion group, N?:, and h % a,, the 
effect of London attraction on the “classical” interception efficiency Ac,,(a,la)2 
(Eq. 8.3.25) can be calculated relatively easily. The particle capture in this case 
is pictured schematically in Fig. 8.4.2, where it can be seen that the limiting 
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U Limiting trajectory ____, 

Figure 8.4.2 Trajectories for particle interception by a cylinder with London forces of 
attraction incorporated. [After Spielman, L.A. & Goren, S.L. 1970. Capture of small 
particles by London forces from low-speed liquid flows. Environ. Sci. Technol. 4, 
135-140. Copyright 1970 American Chemical Society. With permission.] 

trajectory, which divides capture trajectories from escape trajectories, is no 
longer a grazing trajectory as in the classical interception case of Section 8.3, but 
has a stagnation point at  the rear of the collector. The collection efficiency E,,, 
can be determined by tracing a particle back from O = T, along the limiting 
trajectory to a point where the gap width is sufficiently large that the trajectory 
thereafter effectively coincides with a fluid streamline. This displacement of the 
limiting trajectory, because of N$ being relatively large, is tantamount to the 
neglect of the hydrodynamic interactions. Moreover, because a p  4 a, the inertia 
free stream function near the surface (Eq. 8.3.24) still accurately describes the 
flow field. 

With large the limiting trajectory falls in the range where h * a p ,  a 
result that can be confirmed a posteriori. The particle trajectories are found 
from relations for dhldt and dO,ldt on eliminating the time t. To obtain dhldt 
for the limiting case considered, we use Eqs. (8.4.3) to (8.4.6), (8.4.8), (8.4.9), 
(8.4.11), and (8.4.14) to derive 

Introducing the adhesion group (Eq. 8.4.17), we can simplify Eq. (8.4.18) to 

(8.4.19) 
dt a 

For h 9 up,  the tangential velocity u, = u(dO,,/dt) is given by Eq. (8.4.2) (see Fig. 
8.4.1C), from which 

(8.4.20) 
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The limiting trajectory has, as previously noted, a stagnation point (u,  = 0, 
ug = 0) at  the rear of the collector where 0, = n-. At this point, denoted by an  
asterisk, from Eq. (8.4.19) the gap width y “  (see Fig. 8.4.2) is 

(8.4.21) 

The limiting trajectory (Op = n-) is seen to lie in the range of large h la ,  for large 
values of the adhesion group N y l .  

Eliminating time betwen Eqs. (8.4.19) and (8.4.20) yields, with some 
algebra, the following first-order linear equation in (h la ,  )‘, which describes the 
particle trajectories under the criteria noted above: 

(8.4.22) 

Integrating this equation along the limiting trajectory and taking the cube root 
of the solution give 

(8.4.23) 

With the above result we may now calculate the cylinder capture efficien- 
cy, which, from the discussion following Eq. (8.3.25), is 

(8.4.24) 

Here, we have again used the solution for the stream function near a cylinder 
Eq. (8.3.24) with h %- a,,. Substitution of Eq. (8.4.23) with Op = 0, on evaluating 
the definite integral, yields 

2 1 1 3  

Ecy ,  = Acy,( ”) a 2  (” N$) (8.4.2s ) 

This result was first derived by G.L. Natanson (see, Spielman 1977). We 
emphasize again that it is valid only for up e u  and for large values of the 
adhesion group, but not so large that particles are attracted from the area of 
uniform velocity. It is seen to predict a weaker dependence on particle size than 
the “classical” solution Acy,(apla)2, in which London attraction and hydro- 
dynamic interactions are not considered. Note that the spherical collection 
efficiency has a similar behavior, given by (Spielman & Goren 1970) 

(8.4.26) 

where hl?: is defined by Eq. (8.4.27) with ACyl  = 1. This approximate solution 
may be compared with the classical result ~ ( U , / U ) ~  (Eq. 8.3.23). 
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In Fig. 8.4.3, taken from Spielman & FitzPatrick (1973), is shown the 
approximate analytic expression of Eq. (8.4.25) for the cylindrical collector 
compared with an exact numerical solution in which London attraction and the 
complete range of hydrodynamic interactions are included. The agreement of 
the exact solution with the approximate one is seen to be surprisingly good a t  
relatively low values of the adhesion group, indicating that h does not have to 
be very large compared with up before the hydrodynamic interactions become 
weak. 

In concluding this section, we would emphasize again that the problem 
treated is only illustrative of the approach and results that may be expected with 
external forces included. For example, if gravity forces are important in 
interception, as with dense particles, then from Eq. (5.4.5) the additional body 
force 

(8.4.27) 

would have to be added to determine F,,. We would then expect any general 
solution to also depend on a dimensionless gravity group 

(8.4.28) 

where, as before, F,, is defined by Eq. (8.4.11). The reader is referred to 
Spielman (1977) for additional references on both Brownian and interception 
collection behavior with different external forces included. 

1 0 - 6  10-5 10-4 1 0 - 3  10-2 lo-' 1 10 

N 2 
Figure 8.4.3 Collection efficiency versus adhesion group for cylindrical collector. [After 
Spielman, L.A. & FitzPatrick, J.A. 1973. Theory for particle collection under London 
and gravity forces. J .  Colloid Interface Sci. 42, 607-623. With permission.] 
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8.5 Filtration and Drag Models of Porous Media 

Filtration is the process of separating particles in suspension from a carrier fluid, 
which we here generally take to be a liquid, by passing the fluid through a 
permeable material called the filter medium. As noted in the introduction to 
Section 8.3, the filter may be a porous granular or fibrous medium, and the 
separated solids may be collected as a cake on the surface or be retained within 
the pores of the medium. 

From the discussion of the preceding two sections, we have seen that 
particle collection may not simply be a steric action of capturing suspended 
particles by virtue of the porous medium acting as a constricting “strainer.” 
Particles much smaller than the pores of the medium can be captured and 
retained. This may be a consequence of hydrodynamic interactions or  molecu- 
lar, electrical, o r  gravitational forces, acting alone or in combination. Indeed, 
depending upon the particles and the medium, chemical forces could play a role 
as we have seen earlier, as could magnetic forces if the particles and medium are 
magnetic and an appropriate magnetic field gradient is applied. 

In Section 4.7 it was discussed how, for a low Reynolds number flow 
through a porous media or, equivalently, a filter media, the pressure drop 
follows Darcy’s law (Eq. 4.7.7), here rewritten in one dimension: 

(8.5.1) 

where we note again that U is the superficial velocity. In Section 4.7, using a 
capillary model, we derived the Kozeny-Carman relationship between the 
permeability k and the properties of the medium. The three other principal 
approaches to determine permeability involve the use of drag models, orifice 
models, and stochastic models (Scheidegger 1960, Philip 1970). We consider 
below only the drag model because it, together with the capillary model treated 
previously, illustrates many of the structural and geometrical effects of flow 
through porous media. 

It has been found as the porosity increases above about 0.8 that the 
Kozeny constant from the capillary model (Eq. 4.7.15) increases rapidly, 
becoming indeterminate as the porosity E-+ 1. This is not surprising, since the 
flow mechanism can be interpreted as changing from one of flow through 
capillaries to flow around discrete particles. Such a concept leads to the 
evaluation of the permeability by the so-called drag model. In this model the 
drag on a single particle, taking into account that it is influenced by the presence 
of neighboring particles, is summed over the total number of particles in the 
medium. We shall restrict our discussion of the drag model to Happel’s free 
surface model (Happel 1958, Happel & Brenner 1983). 

In Happel’s model the porous medium is taken to be a random assemblage 
that is assumed to consist of a number of “cells,” each of which contains a 
particle surrounded by a fluid envelope. The fluid envelope is assumed to 
contain the same volumetric proportion of fluid to solid as exists in the entire 
assemblage. This determines the envelope radius of each cell. For illustration we 
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consider, as did Happel (1958), that the particles of the medium are all spheres 
of identical size. If a is the radius of the spherical particle in the porous medium, 
then the envelope radius b of each cell (Fig. 8 5 . 1 )  is given by 

(8.5.2) 

where 4 = 1 - E is the volume fraction of grains in the porous medium. 
Happel further assumed that each cell remains spherical and that the 

outside surface of the cell is frictionless; that is, the shear stress vanishes at  the 
outer boundary of the cell. The disturbance due to any particle is therefore 
confined to the fluid cell. 

The flow is considered to be inertia free and to obey the Stokes equation, 
with the solid spherical particle taken to move within the cell with superficial 
velocity U.  This is equivalent to using a coordinate system moving with velocity 
U. The appropriate boundary conditions are thus 

u,=O u,=O a t r = a  ( 8.5.3 a) 

u , = - U c o s ~  T ~ @ = O  a t r = b  (8 S.3 b) 
and 

Here, T,,, is the shear stress tangential to the cell boundary; that is, the outer cell 
boundary is assumed to be a free surface. By this artifice the cell model accounts 
in an approximate way for the interference effects of the neighboring particles. 

A closed-form solution can be obtained near the particle surface. The 
stream function V has the form of Eq. (8.3.20) except that the velocity U ,  which 
is here the superficial velocity, is multiplied by a function Asp,, of the solid 
volume fraction. The solution may be written 

( 8.5.4a) 2 . 2  V =  :UAsph(r  - a)  sin f3 

with 

( 8.5.4 b) 

Envelope or 
“unit cell” 

/ 
/ 

\ 
\ / .--- 

Figure 8.5.1 Happel’s cell model for a spherical particlc. 
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Happel ( 1959) obtained corresponding closed-form inertia free solutions 
within his model for assemblages of cylinders in those cases where the flow is 
parallel to the axis of the cylinder and where the flow is a t  right angles to the 
cylinder axis. The stream function has the same form as in Eq. (8.3.24), except 
that ACy,  is a logarithmic function of the solid volume fraction, independent of 
the Reynolds number since the flow is inertia free (Spielman 1977). 

The permeability can now be calculated from the drag force per particle, 
which Happel showed to be given by 

(8.5.5) 

For the drag model the drag force per particle divided by the cell volume g7rb3 
must equal the pressure drop per unit length of bed, -dpldx. Solving for U and 
substituting in Eq. (8.5.1), we obtain 

(8.5.6) 

where d = 2a is the particle diameter. 

small F (that is, a tightly packed bed), with the result 
With 4 = 1 - E ,  we may expand the above permeability expression for 

& - + O  
E 3 d 2  

162 
k=- (8.5.7) 

All terms of 0(1), O(E) ,  and O(E’ )  cancel identically to yield the above relation. 
The Kozeny-Carman formula, Eq. (4.7.16), can be similarly expanded to give 

E + O  
&”d2 - 
180 3 6 K  

-- k K - c  = - (8.5.8) 

with K the Kozeny constant. The validity of the Happel or Kozeny-Carman 
models in the limit of very small E may be questioned. However, comparison of 
Eqs. (8.5.7) and (8.5.8) gives from Happel’s model that K =4.5. Happel 
pointed out that for packed beds of uniform spheres for F = 0.26 to E = 0.48 the 
best correlation corresponds to K = 4.80, with a probable range of variation 
from 4.8 to 5.1. However, he noted that, in general, K - 5 . 0  (the Carman 
value), independent of particle shape and porosity from E = 0.26 to F = 0.8. 

We can determine the value of the Kozeny constant as given by Happel’s 
permeability (Eq. 8.5.6) by equating it to the Kozeny-Carman permeability 
which from Eq. (4.7.16) may be written 

- ( 1  - 4)3d2 
‘ K - C  - 36Kc$= 

(8.5.9 

from which the Kozeny constant, according to Happel’s formula, is 



270 Suspension Stability and Particle Capture 

(8.5.10) 

Table 8.5.1 tabulates the Happel values of the Kozeny constant, and the 
results are remarkable for the fact that, for a porosity between 0 and 0.6, the 
constant has a range only between about 4.4 and 5.1. Above a porosity of about 
0.7 the Kozeny constant increases rapidly and becomes indeterminate. This is 
not surprising, since a condition of isolated particles is approached rather than a 
packed bed. What is, however, most encouraging is the agreement with the early 
Carman value in the range of porosity for which the model would most likely be 
expected to hold. 

Let us now turn our attention to the behavior of filter media, employing 
both the characteristics of capture by a single collector, discussed in earlier 
sections of this chapter, and the understanding of flow characteristics through 
porous media, which we have just outlined. The suspended particle trainsport in 
a filter medium is analogous to transport in flocculation processes with the 
smaller suspended particles transported by diffusion and the larger ones by 
interception or, perhaps, by settling; any surface forces present modify the 
trajectories for particle-collector contact. In what follows we relate the capture 
of the suspended matter by the porous medium, consisting of an assembly of 
collectors, to capture by a representative collector. 

For a bed of uniform spherical collectors oriented perpendicular to the 
uniform flow velocity upstream of the medium U ,  we can write an expression 
for the average suspended particle balance over a differential slice of bed of 
depth dx (Spielman & FitzPatrick 1973). The equation for the differential rate 

Table 8.5.1 
Kozeny Constant According to Happel Model for 
Assemblage of Spherical Particles of Uniform Size 

Sphere-Cell Kozeny 
Radius Ratio Porosity Constant 
alb = + ‘ I 3  s = l - +  Lp 

1 .0 
0.983 
0.965 
0.928 
0.888 
0.843 
0.794 
0.737 
0.669 
0.585 
0.464 
0.368 
0.215 

0 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 
0.99 

4.50 
4.45 
4.44 
4.42 
4.44 
4.54 
4.74 
5.11 
5.79 
7.22 

11.3 
18.9 
71.6 
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of change in average suspended particle number density n (number of particles 
per unit volume) is 

(8.5.11 ) 

where nc = number of collectors per unit volume 
lsph = average mass flow rate of particles captured by all spherical collec- 

tors in the differential slice (kg s-' (number of collectors)-') 
po = density of suspended matter equal to n times the mass of a particle 

The particles are assumed to be uniform and, for specificity, spherical. The 
collector volume fraction #I = 4nc7ra3, where a is the collector radius, whence 

(8.5.12) 

From the definition of the single particle collection efficiency Esph = I,,,/ 
*a2Upo, the above equation can be written as 

- - = ( ; y ) n = A n  dn 3 
dx 

(8.5.13) 

where A is the filter coefficient, with dimensions of inverse length. 
For all capture mechanisms where the suspended particles are independent 

of one another and capture results from individual encounters with the collec- 
tors making up the porous medium, the filter coefficient A is independent of the 
suspended particle number density n. Examples of this behavior are seen in the 
single spherical collector efficiencies given by Eqs. (8.3.15), (8.3.23), and 
(8.4.26). If the incoming suspended particle number density is no and the filter 
medium is uniform and unclogged, Eq. (8.5.13) integrates to 

n = n, exp(-Ax) (8.5.14) 

The filter coefficient A is thus seen to be a characteristic penetration depth of the 
suspended matter in the porous medium. 

In Sections 8.3 and 8.4 we derived the single spherical collector efficiency 
under different assumptions as to particle size and surface forces. Three of these 
relations are given by Eqs. (8.3.15), (8.3.23), and (8.4.26). To apply these 
relations to porous media, they must be modified to take into account the 
interactions between the particles making up the porous medium itself. The 
method for doing this is embodied in the drag model. To illustrate the 
procedure, we assume that the interaction effect associated with an assemblage 
of collectors making up the porous medium can be accounted for by using, say, 
Happel's drag model results. In this case all the single collector results can be 
translated to porous media behavior simply by multiplying the velocity U 
appearing in the single collector interception results by the solid volume fraction 
function A s p h  appearing in the stream function result for the cell model. This 
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follows from the fact that the stream function characterizes the suspended 
particle mass intercepted by the medium. For the spherical collector the solid 
volume fraction function is given by Eq. (8.5.4b). We have already noted that 
corresponding functions have been derived for cylindrical collectors oriented 
parallel and normal to the mean flow direction. 

As an illustration of the modification, the Brownian collection efficiency 
for a porous medium made up of an assemblage of spherical collectors would 
become, from Eqs. (8.3.13) to (8.3.15), 

2.50ASph 
E s p h  = (8.5.15) 

Similarly the interception efficiency of Eq. (8.3.23) would become, from Eq. 
(8.3.22), 

(8.5.16) 

The modification is seen to parallel the incorporation of the Stokes-Oseen 
function Acy, (Eq. 8.3.24b) into the solution for the collector efficiency of a 
single cylindrical collector. A similar change would be made for an assemblage 
of cylindrical collectors, though the volume fraction function that would replace 
the Stokes-Oseen function A,,, would differ from the one for spherical col- 
lectors. 

With surface forces present the velocity U appearing in the adhesion 
group, which in the porous media case represents the superficial velocity, must 
also be multiplied by Asp,,. The adhesion group would thus be modified to 

(8.5.17) 

which parallels the single collector definition given for a cylinder (Eq. 8.4.17). 
This change would be required in addition to multiplying the right side of Eq. 
(8.4.26) for Esph by Asp!. For Eq. (8.4.26) it follows that Esph would be 
proportional to Asph . Similarly, were settling important and the gravity group 
entered, it would take the form 

2 / 3  

(8 .5 .18 )  

paralleling Eq. (8.4.28). 
In the manner described the filter coefficient A can be determined theoret- 

ically by using the appropriate single collector results. Experimentally A is 
obtained by measuring the suspended particle number density n as a function of 
bed depth, and then determining the slope of plots of In n versus x .  

In our discussion it has been supposed that the filter medium remains 
“unclogged.” However, in reality the situation is even more complicated than 
has been described, because to represent conditions in the filter we must account 
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for the change in porosity and  surface area, which occurs as particles accumu- 
late, and  for the effects of particle and medium migration that occur under the 
influence of increasing pressure gradient. The complexity of the situation makes 
the  problem difficult to analyze and is beyond the scope of this book. For details 
see Scheidegger (1960), Weber (1972), and  Ives (1970). 

Cell models have also been applied to the approximate determination of 
the properties of concentrated suspensions. This is touched upon in our  
discussion of suspension viscosity a t  high shear rate in Section 9.3. 
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Problems 

8.1 Two circular cylinders of length L and radii a,  and a 2 ,  respectively, are 
oriented with their axes of symmetry parallel and with their ends aligned. 
The cylinder surfaces are separated along their line of centers by a distance 
h,, where h, < a ,  and h ,  e a,. The surface potential on the cylinders is 
constant and equal to +,,, and the medium permittivity E is uniform. It is 
desired to determine the double layer repulsive force between the cylinders. 
Assume that zF+,,, 6 RT, so the Debye-Huckel approximation is valid, and 
that the strongest interaction occurs along the line of centers, so the total 
interaction can be considered to be made up of contributions from 
infinitesimally small parallel plates. 
a. Employ similar geometrical reasoning that led to Eq. (8.1.13) to 

derive an analogous integral expression for the cylindrical case consid- 
ered here and, using Eq. (8.1.9), show that the repulsive force is given 
hv 

where A, is the Debye length. Note that 

b. 

8.2 a. 

Why is it necessary in the derivation of the above result to satisfy the 
conditions h, < a ,  and h, < a,? 
Verify that the proportionality coefficient in Eq. (8.1.26) for the 
critical flocculating electrolyte concentration for identical spherical 
particles with large surface potentials is 3.8 X 

What are the theoretical ratios of the critical flocculating concen- 
trations of indifferent electrolytes containing counterions with charge 
numbers 1, 2, and 3 for identical spherical particles with low surface 
potentials? 

Consider a colloidal suspension that initially contains equal numbers of 
small spherical particles of radii a ,  and large spherical particles of radii 

a. What is the ratio of the rate of collision per unit volume between two 
small particles, two large particles, and a small particle and a large 
particle due to Brownian motion, where the diffusion coefficients D ,  
and D ,  are given by the Stokes-Einstein equation? Express the answer 
in whole numbers. 

J' rnol m-3. 
b. 

8.3 

u2 = l O U , .  
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b. Based on the observation that the number of large particles is not 
affected by collisions between the small particles or between small and 
large particles, assume that the number density of large particles at  
any time is given by Eq. (8.2.9). Show using the result of part a that 
the rate of decrease of the small particle number density n ,  is given by 

6 K n  , n 2o 

dt 1 + t l r  
- Kni + dn,  

where nzo  = initial number density of large particles 
7 = flocculation time for large particles 

K = kTlw 

c. Using the fact that the collision process between the small and large 
particles is the fastest which assumes that nzo  is not too small; 
calculate the fraction of small particles remaining after the time r. 
Compare this result with that which would be obtained if only small 
particles were present, supposing equal number densities of large and 
small particles initially. What can be concluded from the comparison? 

Verify the cylindrical interception efficiency given by Eq. (8.3.25). 
Starting from the convective diffusion boundary layer equation in simil- 
arity form (Eq. 8.3.8),  derive the general functional relation for the 
spherical collection efficiency given by Eq. (8.3.26). 
In Section 8.4 a superposition of F,, Fst, and FA, is carried out, leading to 
Eq. (8.4.18), which defines the particle velocity with respect to the 
collector. Explain where these forces come from and describe the superpo- 
sition of the velocity fields associated with each. Only the governing 
differential equations and boundary conditions along with simple sketches 
to indicate the solution domain are required. 
Using a drag model, we want to estimate the permeability of a porous 
fibrous medium by supposing that the medium is composed of a random 
distribution of fibers of uniform density, where the fibers are modeled as 
long circular cylinders of equal lengths L that are very large compared 
with the radii a. Assume that the random distribution of n fibers per unit 
volume can be represented by an equipartition of the fibers in three 
mutually perpendicular directions, one of which is along the direction of 
the mean flow. The separation between the fibers is large compared with 
the fiber radius, so the porosity F is large and it is reasonable to neglect 
any hydrodynamic interference effects between the fibers. Assuming the 
flow to be inertia free and the pressure drop necessary to overcome the 
viscous drag on the fibers to be linearly additive, determine the permea- 
bility for the fibrous medium as a function of the porosity F ,  fiber radius u, 
and length L. Note that the form of Eq. (5.1.14) holds for a cylinder 
moving perpendicular to its axis. 

8.4 
8.5 

8.6 

8.7 



9 Rheology and Concentrated 
Suspensions 

9.1 Rheology 

A number of fluids mentioned throughout the text that are of importance in 
physicochemical hydrodynamics do  not behave in the Newtonian fashion 
outlined in Section 2.2. That is, the stress tensor is not a linear function of the 
rate of strain tensor. Such “nonlinear” fluids are termed non-Newtonian and the 
study of their behavior falls under the science of rheology, which deals with the 
study of the deformation and flow of matter. The materials encompassed by this 
broad subject cover a spectrum from Newtonian fluids at  one end to elastic 
materials at  the other with such “fluids” as tars, liquid crystals, and “silly 
putty” in between. Among the fluids we have discussed in the text that do  not 
exhibit a Newtonian behavior are some polymeric liquids, some protein solu- 
tions, and suspensions. 

The underlying origin of the non-Newtonian behavior is in the fluid 
microstructure itself, which can be distorted by the flow because of the relatively 
long time for the fluid to relax to equilibrium. The principal macroscopic 
manifestations of this are manyfold and we draw some illustrations from Bird et 
al. (1987). For example, polymers generally exhibit a viscosity which decreases 
with increasing shear rate, a behavior that may in fact be their most important 
characteristic. Thus a polymer liquid with a low shear rate viscosity equal to 
that of a Newtonian fluid will drain out of a capillary faster than will the 
Newtonian fluid. Also normal stress effects will arise in simple shear flows. One 
such effect, strikingly illustrated by rotating a rod in the center of a beaker with 
a polymeric liquid, is that the liquid climbs up the rod. This contrasts with what 
is observed with a Newtonian fluid, and would be expected from Newtonian 
thinking, namely that the liquid would be pushed outward from the rod by 
centrifugal force and form a dip near the center of the beaker. Other effects that 
are manifested include an “elastic recoil” resulting from the tendency of 
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polymer molecules which have been stretched by the flow to spring back when 
the external forces are released. An aluminum soap solution when poured out of 
a beaker shows this dramatically. Cut in midstream the top half springs back to 
the beaker and only the bottom half falls down. 

An important distinction between polymeric liquids and suspensions arises 
from their different microstructures and is evidenced by the elastic recoil 
phenomena that polymers exhibit but suspensions d o  not. The polymeric or 
niacromolecular system when deformed under stress will recover from very large 
strains because like an elastic material the restoring force increases with the 
deformation. With a suspension, however, the forces between the particles 
decrease with increasing separation so that there is limited mechanism for 
recovery. There are, however, a variety of rheological properties common to 
polymeric liquids that suspensions will exhibit including shear rate dependent 
viscosity and time-dependent behavior. We shall discuss these differences in 
more detail in the following section. 

We may distinguish three general classifications of non-Newtonian fluids 
in shear flow (Tanner 1988): 

1. 

2. 

Time-independent fluids in which the shear stress is a nonlinear and 
single-valued function of the strain rate. 
Time-dependent fluids in which the shear stress is not a single-valued 
function of the strain rate but depends on the shear stress history of the 
fluid. 
Viscoelastic fluids that have both viscous and elastic properties in  which 
the shear stress depends upon both the strain rate and strain. The elastic 
character introduces a time-dependent behavior or “memory” to such 
fluids. 

3 .  

In what follows, we shall restrict our considerations to the first class of 
fluid, whose constitutive equation can be expressed in the general form 

where T,/ is the stress tensor, and f l ,  is a nonlinear tensor function of the 
rate-of-strain tensor E ~ ~ .  This functional form defines the first category of fluid 
although depending on the flow, it may also be satisfied by a viscoelastic fluid as 
discussed below. The reason for the lack of uniqueness is because the material 
functions by which the kinematics is related to the stress field for a non- 
Newtonian fluid is dependent on the basic flow itself, for example, whether it is 
a shear flow or a shear-free flow, or if it is steady or unsteady. For purposes of 
this discussion, we restrict our considerations to a steady incompressible 
Couette flow defined by Eq. (5.3.1) 

u = y y x y  u = o  w = o  (9.1.2) 

In a simple shear flow for a Newtonian fluid the only nonzero component 
of the stress tensor is T~~ and of the rate-of-strain tensor eyx ,  where from Eq. 
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(5 .3 .2)  the shear rate qY, = 2~~~ = du /dy .  The only material function is the 
viscosity p. In general for an incompressible non-Newtonian fluid there will be 
six independent components of the stress tensor (Eq. 2.2.13). However, assum- 
ing the fluid to be isotropic with any directional properties introduced only by 
the flow itself, it can be shown that it must be invariant to a rotation of 
coordinate axes and the stress tensor and the rate-of-strain tensor must have the 
same principal axes. In consequence, for a simple shear flow T , ~  = T,, = T , ~  = 

T~~ = 0. There remain four independent stress components; the three normal 
stresses r,,, ryy,  r,,, and the shear stress T,,, = T ~ ~ .  Because the flow is incom- 
pressible, the isotropic pressure cannot be separated from the normal stresses. 
Of the four stress components, there are only three independent combinations 
that can be measured, which in turn define three material functions. For a 
Couette flow, the shear stress T ~ ,  and the two normal stress differences 
(T,, - T ~ ~ )  and ( T ~ ~  - T , ~ )  are the customary choices. 

According to Eq. (9.1.1) the stress tensor is a unique function of the 
rate-of-strain tensor whence for the steady shear flow considered, a function 
only of i;,. In analogy with the Newtonian viscosity law, it is customary to 
express the stress component T,, through the relation 

(9.1.3) 

where q, the most common material function in viscometric flows, is usually 
referred to as the apparent viscosity. The two normal stress differences define 
two more material functions through the relations 

(9.1.4) 

(9.1.5) 

where the functions ?PI and Pz are termed, respectively, the first and second 
normal stress coefficients. All of the material functions are even functions of i,,, 
so that they are written as a function of i, = li,yxl. Note that a viscoelastic fluid 
will satisfy Eq. (9.1.3) since the fluid is sheared at a constant rate and any 
time-dependent effects associated with earlier deformations will die out in time. 

For a large class of macromolecular fluids, including polymeric liquids, 
biological fluids, and suspensions, the apparent viscosity generally decreases 
with increasing shear rate. Finite normal stress coefficients are generally more 
associated with materials exhibiting a viscoelastic behavior. The first normal 
stress coefficient is positive and decreases even more sharply with increasing 
shear rate than the apparent viscosity, while the second normal stress coefficient 
is much smaller than the first and is generally negative. The rod-climbing 
experiment described above is a consequence of finite normal stress differences. 

We are most concerned in this text with the apparent viscosity, which for 
the steady Couette flow examined is simply the ratio of the shear stress to shear 
rate 

rl = ryJY (9.1.6) 
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Illustrated in Fig. 9.1.1, relative to a Newtonian fluid, are the behaviors of the 
shear stress versus shear rate in a Couette flow for three principal types of 
non-Newtonian fluids that can be characterized by the form of the apparent 
viscosity function in Eq. (9.1.3). A number of empirical functions have been 
widely employed to characterize the apparent viscosities for these classes of 
fluids. One termed a Bingham plastic behaves like a solid until a yield stress T,, is 
exceeded subsequent to which it behaves like a Newtonian fluid with a “plastic” 
viscosity pLp.  The apparent viscosity for this fluid may be written 

(9.1.7a) 

7=00 (9.1.7b) 

Many fluids including colloidal suspensions, slurries, and paints exhibit this type 
of behavior. 

The other two classes of fluids depicted in Fig. 9.1.1 are the shear thinning 
or  pseudoplastic fluid and the shear thickening or dilatant flziid. The most 

/ 
/ 

Shear rate, y 

Figure 9.1.1 
fluids. 

Shear stress versus shear rate in Couette flow for model non-Newtonian 
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widely employed empirical characterization in engineering for these fluids is the 
power-law model introduced independently by W. Ostwald and A. de Waele 

77 = (9.1.8) 

It is seen to contain two parameters; m referred to as the consistency index with 
units of Pa sn and the dimensionless power law exponent n. If n = 1, the fluid is 
Newtonian and m = p .  For n <  1, the fluid is shear thinning and the shear 
stress-shear rate slope decreases monotonically with increasing shear rate; for 
n > 1, the fluid is shear thickening and the stress-shear rate slope increases with 
increasing shear rate. We have already indicated that most macromolecular 
non-Newtonian fluids are shear thinning, however, shear thickening behavior is 
also observed over some ranges of shear rate with a number of polymer 
solutions and concentrated particle suspensions (Barnes et al. 1989). 

The concept of an apparent viscosity introduced for a Couette flow has 
been applied empirically to a variety of incompressible inertia free steady shear 
flows through the generalized relation 

r = qj (9.1.9) 

where r is the magnitude of the stress tensor, y the magnitude of the rate-of- 
strain tensor (shear rate), and 7 is a scalar function of y. A fluid satisfying Eq. 
(9.1.9) is termed a generalized Newtonian fluid (Bird et al. 1987). Equations 
(9.1.7) and (9.1.8) are among two of the most frequently used empirical 
expressions for the apparent viscosity. 

To illustrate the application of the generalized Newtonian fluid relation, 
we consider the steady fully developed flow of a non-Newtonian fluid in a 
circular pipe (Fig. 9.1.2). From an elemental force balance on a cylindrical fluid 
element of radius Y and length Ax,  we have on equating the pressure force to the 
shear force 

m'[ p ( x  + A x )  - p(x)]  = 2rrrAx.r (9.1.10) 

with T = T,~, or in the limit as A x  -+ 0 

(9.1.1 1) 

Figure 9.1.2 Non-Newtonian flow in a circular pipe. 
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Here, we denote by G the negative of the constant pressure gradient, whence a 
positive value of G causes a flow in the positive x-direction. 

Let us choose a Bingham plastic (Eq. 9.1.7) for our generalized Newtonian 
fluid. From Eq. (9.1.11), the shear stress is seen to vary linearly from 0 at  the 
pipe axis to $Ga at the pipe wall, where following convention (Section 2 . 2 ) ,  we 
take the shear stress to be positive. In the pipe core r 5 ro,  the shear stress T is 
less than the yield stress T,,, the apparent viscosity is infinite, and the fluid moves 
as a solid plug. On the other hand, in the annular region near the wall 
rg  < r < u, where 7 > T ~ ,  the flow will be quasi-Newtonian (Fig. 9.1.2). 

The equation of motion in the wall region from Eqs. (9.1.7a) and (9.1.11) 
with the shear stress taken positive is 

du Y 

P dr 2 
~ ~ - p  - = - G  (9.1.1 2) 

Assuming the flow to be in the positive x-direction, we have set y == -duldr  
since -i, must be positive. The boundary conditions with no  slip a t  the wall and 
with the shear continuous at  the plug flow boundary r = r,) are 

u = 0  a t r = a  (9.1.13a) 

(9.1.13b) 

Integrating Eq. (9.1.12) and evaluating the constant of integration from 
the no-slip condition, yo from continuity of shear, and u,,,, from the velocity at  
r,), we find 

2 
T 2  U 

u = U",, ,  = -3- (6 - 1)  r , > r > a  (9.1.14b) 
pLPG 

where 

2% ro = - 
G 

(9.1.15) 

In the limit where the yield stress T, = 0, the velocity profile reduces to that for 
the Poiseuille flow in a pipe of circular cross-section (Eq. 4.2.14). 

Figure 9.1.3 shows the measured velocity profile in a 51 mm circular glass 
tube determined by laser doppler velocimetry for the laminar flow of a 
non-Newtonian colloidal slurry with a mean velocity of 1.37 m s-' (Park et a]. 
1989).  The particles are 1-2 p m  transparent silica spheres with a mean particle 
size of 1.13 p m  based on number and 1.79 p m  based on volume, the volume 
fraction 4 = 0.14, and the fluid is a mixture of an organic solvent and mineral 
oil with an index of refraction matched to that of the particles. 
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Figure 9.1.3 Laminar velocity profile for the nowNewtonian flow of a transparent 
colloidal slurry in a 51 mm diameter glass tube a t  a mean velocity of 1.37 m s - '  (data 
from Park et al. 1989). 

From viscometer measurements, the fluid was found to have a so-called 
yield-power law behavior with an apparent viscosity of the form 

(9.1.1 6)  70 77 = + 
Y 

The values of the constants were measured to be T~ = 10 Pa, n = 0.630, and 
m = 0.167 Pa s'. This relation is seen to be a combination of the Bingham 
plastic and power law behavior and is found to fit the measurements to within 
an accuracy of 1-2%. In Fig. 9.1.3 we have drawn in the velocity distribution 
for a Bingham plastic fluid using the measured value of the yield stress and a 
measured value of r,la = 0.57 from which we calculate G = 1.4 X lo3 Pa m-', 
p,, = 2.28 x Pa s, and urnax = 1.84 m s - ' .  The agreement between the 
theory and measurement, although not as excellent as for the yield-power law 
behavior, is nevertheless seen to be quite good and shows clearly the nature of 
the non-Newtonian behavior associated with the flow of a colloidal suspension. 
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9.2 

A word of caution is necessary regarding the use of the generalized 
Newtonian fluid approach derived from the constant shear Couette flow and its 
application to a colloidal suspension pipe flow as above. In the example 
discussed, the success of the approach is dependent on the fact that the particle 
volume concentration is relatively low (4 = 0.14). In higher concentration 
non-uniform shear flows, such as pipe flows, where 4 is say near 0.5, the 
particle concentration distribution will not remain uniform. Among the reasons 
for this are shear-induced migration, wherein particles migrate from regions of 
high to low shear, wall effects, and excluded volume effects (cf. Section 5.7) .  We 
return to this again in the next section. 

Parameters Governing Polymers and Suspensions 

Polymeric solutions result from the addition of a solvent to the polymer. The 
interaction between the solvent and solute is relatively large compared to that 
for smaller molecules. As a result, the behavior of polymer solutions may be far 
from Newtonian even when dilute, which generally is the condition we empha- 
size in what follows. 

The similarities and differences in the non-Newtonian behaviors of poly- 
meric liquids and suspensions lie in their local microstructures. We, however, 
shall examine the dependence of the rheological characteristics of these fluids in 
terms of the global properties of the polymers in solution and the particles in 
suspension. For example, the rheological properties of dilute polymer solutions 
are mainly a function of the concentration, temperature, molecular weight, and 
structure of the long chain molecule, but the single most important factor is the 
length of the polymer chain. Suspension rheology on the other hand is, in 
general, a function of the solids loading, particle shape and size distribution, and 
the chemical state of the system, although the single most important parameter 
is the particle volume fraction. Of course, both the polymer and suspension 
rheology depend on the hydrodynamic state of the system, which in the 
preceding section we characterized in a steady shear flow by the shear rate. 

Before considering the relevant forces governing polymer and suspension 
rheology, we first discuss some general behaviors of polymeric liquids, many of 
the important features of suspensions having already been brought out in earlier 
chapters. Synthetic polymers are macromolecules made up of repeating units to 
form a long flexible chain. The example of polyethylene, which is a linear chain 
built up from the ethylene group, was cited in Section 1.3. The number of 
repeating structural units N or monomers in one chain is called the degree of 
polymerization, a number which can be very large and which is a measure of the 
chain length. Symbolically, we may write 

[-CH,-1, for polyethylene 

Another common linear polymer made up from the styrene monomer is 
polystyrene where we may write 
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r 1 L-cH,-cH- , J N  for polystyrene 

The number of structural units N is the molecular weight of the polymer 
divided by the molecular weight of the individual structural unit. A typical 
polyethylene molecule will have N - lo3 with a molecular weight M - 1.5 X 

lo4. Typical polystyrene molecules may have N - 5 x lo3  to 5 X 10’ with the 
corresponding molecular weights M - 5 x lo5 to 5 x lo6. Generally, flexible 
linear polymers will have average molecular weights ranging from l o3  to lo7 
with values of N from around 10 to lo’. The lower limit on N indicates that 
polymeric behavior will be observed for more than about 10 monomer units. I t  
should also be noted that N can be larger with entanglement or strong coupling 
between the molecules, that is, with chemical cross-linking. 

Generally, for dilute polymer solutions the fluid is relatively mobile, while 
for highly concentrated ones it is relatively stiff. The configuration that the 
polymer takes in solution depends on the solvent. A “good” solvent is one 
where a stronger interaction occurs between the solvent and polymer than 
between the solvent and solvent or between various segments of the polymer. In 
a good solvent, the polymer stretches out in the solution and uncoils, while in a 
“poor” solvent it coils. This behavior is shown in Fig. 9.2.1. As shown in Fig. 
1.3.1, typical lengths for extended polymers (say, polystyrene) are in the 
5-10 p m  range, and typical diameters for coiled polymers are in the 0.08- 
0.5 p m  range. 

The random motions of a flexible chain floating in a solvent has been 
studied extensively and one widely used model is the “bead-spring’’ model in 
which spherical beads are separated by equal lengths of polymer chain. The 
chains are considered frictionless springs that may be thought of physically as a 
sequence of monomers long enough to obey Gaussian statistics. Since the 
molecules are small, the viscous force in the velocity field is Stokesian and is 
assumed to act only on the beads, that is, at  discrete points. Physically the beads 
may be thought of as groups of impenetrable monomer units. As pointed out in 
Section 5.1, each spherical bead as it moves through the fluid perturbs the 
velocity distribution of the fluid nearby and this perturbation is felt by the other 

(A) (B) 

Figure 9.2.1 
(B) coiled molecule in poor solvent. 

Polymer configurations in solvents: (A) uncoiled molecule in good solvent; 
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spheres. The other widely applied model is the “dumbbell” model, which is just 
a two-bead model in which the viscous drag acts at  the spheres located at  the 
ends of a frictionless spring. 

Kirkwood (de Gennes 1979) has shown that a single polymer chain 
behaves hydrodynamically like a solid sphere of a radius R that is proportional 
to its radius of gyration. A characteristic relaxation time for the chain deforma- 
tion may then be associated with the rotation of a Brownian sphere of radius R 
(Eq. 5.2.25) 

(9.2.1) 

where qs is the solvent viscosity. 
The radius R is dependent on the solvent. Where the polymer is repre- 

sented as an ideal, freely jointed chain, no account is taken of the effect of the 
solvent. This represents the borderline case between a poor and good solvent. 
Here, each link is in a random direction with respect to its neighbors and the 
end-to-end distance is proportional to aN”*, where a is the effective monomer 
length. This distance is much smaller than the molecular length aN and is 
characteristic of the molecular radius R. For the more common case of a chain 
in a good solvent, excluded volume effects must be considered, and where this 
volume is of the order of a3 it can be shown that (de Gennes 1979, 3990) 

where R ,  is called the Flory radius. By way of example, for R,. = 20 nm and 
q, = 10 

The characteristic flow time in a steady shear flow is simply given by the 
reciprocal of the shear rate. Comparing the relaxation time to the flow time, as 
with hard spheres, the ratio is given by the Peclet number (Eq. 5.3.25) 

- 1  Pa s, the relaxation time at 300 K is about 2 x s. 

X Y R :  Pe = - kT (9.2.3) 

The Peclet number is seen to increase as the cube of the Flory radius showing 
the relative increase in importance of viscous forces with increasing polymer 
length. 

It should be noted here that in polymer rheology, for viscoelastic fluids the 
commonly used dimensionless parameter to characterize the ratio of elastic force 
to viscous force is the Deborah number denoted by the symbol De. This 
parameter is essentially just the Peclet number. In terms of characteristic times, 
it is equal to the ratio of the largest time constant of the molecular motions or 
other appropriate relaxation time of the fluid compared to the characteristic 
flow time. 

In polymer rheology, the results for viscosity are usually expressed in terms 
of the intrinsic viscosity [q], defined by the relation 
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(9.2.4) 

where p is the polymer mass concentration (density) and [TI,, is dimensional, 
having the units of inverse concentration. The subscript p is generally not 
appended but intrinsic viscosity is also used in suspension rheology and because 
it is defined there with volume fraction in place of density, we shall distinguish 
between them by appropriate subscripts. 

The functional dependence of [77Ip = f (+) for a dilute solution can be 
shown by employing the Einstein relation (Eq. 5.3.23) in the form 

where (b is taken here to be the volume fraction occupied by impenetrable 
spheres having the chain hydrodynamic radius R,. Denoting by n ,  the number 
of chains (polymer molecules) per unit volume, the volume fraction occupied by 
the effective spheres of radius R ,  is 

(9.2.6) 

where M is the molar mass of each chain and N ,  is Avagadro's number. 
Combining Eqs. (9.2.4)-( 9.2.6) 

(9.2.7) 

Using this result for the intrinsic viscosity, we may rewrite the relaxation time 
given by Eq. (9.2.1) in terms of readily measurable quantities as 

(9.2.8) 

where R = k N ,  is the gas constant. I t  has been noted by de Gennes (1990) that 
this expression has been widely verified. 

Using Eq. (9.2.8), we may also rewrite the Peclet number in the form 

[dop 7,MY 
RT 

Pe = (9.2.9) 

where for dilute polymer solutions, we have taken the characteristic intrinsic 
viscosity to be defined with respect to the zero-shear-rate viscosity, 7'. The 
zero-shear-rate viscosity is just the constant value the viscosity approaches a t  
low shear rates where the shear stress is proportional to y. The reduced intrinsic 
viscosity [ 7 7 ] P / [ ~ ] :  has been shown to scale with the Peclet number of Eq. 
(9.2.9) (Fig. 9.2.2). At higher shear rates, over several decades of Peclet number, 
the power law type of behavior is seen in Fig. 9.2.2. At very high Peclet 
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Figure 9.2.2 Intrinsic viscosity of polystyrene solutions with various solvents as a 
function of reduced shear rate Pe. [After Bird, R.B. et al. 1987. Dynamics of Polymeric 
Liquids, vol. 1. Fluid Mechanics, 2nd edn. New York: Copyright 0 1987 by John Wiley 
& Sons, Inc. With permission.] 

numbers, the viscosity “may again become independent of shear rate and 
approach qr, the ilzfi~ite-shea~-~ate-viscosity” (Bird et al. 1987). The high Peclet 
numbers may not be achieved, however, because of polymer degradation at high 
shear rates. 

The polymers considered above have been uncharged. Another class of 
polymers are polyelectrolytes whose chains carry a fixed charge. For Debye 
lengths small in comparison with the chain size, polyelectrolytes take on a coiled 
structure. Despite the presence of charge, the description for a polyelectrolyte 
fluid is similar to that which is obtained for a neutral polymer corresponding to 
the ideal chain regime (de Gennes 1990). 

We next consider the behavior and forces acting on concentrated suspen- 
sions, with emphasis on colloidal particles. By concentrated suspension, we refer 
to one in which the average separation between two similar size particles is close 
to or less than the particle size. As noted previously, and as first shown by 
Einstein for dilute suspensions, the solids volume fraction is probably the single 
most important dimensionless parameter in that an increase in volume fraction 
enhances the energy dissipation and hence increases the viscosity. The depen- 
dence of viscosity on particle fraction is more pronounced at high con- 
centrations, generally above 50%. Particle shape and size distribution also play 
important roles in the rheological behavior of suspensions, while particle size by 
itself generally characterizes the magnitude of the forces relative to each other. 
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Following the descriptions of Probstein and Sengun (1987) and Sengun and 
Probstein (1989b), we shall examine the forces in concentrated suspensions. We 
reserve our discussion of the effect of volume fraction for the sections that 
follow. 

We group the forces that control the suspension rheology into two main 
categories: colloidal forces and viscous forces. The colloidal forces include 
Brownian diffusion forces and the surface forces of electrostatic repulsion and 
van der Waals attraction. In order to define the dimensionless scaling parameters 
that characterize the relative magnitude of these forces we assume the particles 
are separated by a distance of the order of the particle radius a, which is in turn 
assumed to be close to the smallest particle separation h,. 

Under the Stokes flow and particle separation assumptions, the viscous 
force between two approaching particles should scale as p a U ,  with p the 
Newtonian viscosity of the medium and U the approach velocity. With U - a?, 
where i, is the applied shear rate, the energy dissipation within the gap between 
the particles scales as pa3+. We have here assumed that the interaction 
frequency between the particles is of the order of y .  This will be true so long as 
the particle concentration is not so high that we are close to the maximum 
packing fraction for which flow can occur, a point which is discussed in greater 
detail in the following section. 

The thermal energy of a particle scales as kT, while with a - h,  the van 
der Waals attractive energy scales as the Hamaker constant A (Eq. 8.1.20). 
Finally from Eq. (8.1.15), the energy of repulsion is seen to scale as aeg2 for 
small zeta potentials, say b less than the Nernst potential at standard tempera- 
ture (26 mV), and for small Debye length to radius ratio. 

Comparing the viscous energy dissipation to the thermal energy leads 
again to the Peclet number 

p y a 3  Pe = - 
kT 

(9.2.10) 

This is exactly the Peclet number defined by Eq. (5.3.25), which measures the 
characteristic rotational Brownian diffusion time to the time scale defined by the 
reciprocal of the shear rate. I t  is the same measure found for dilute polymer 
solutions with the particle radius here replacing the Flory radius for the 
polymer. 

A second dimensionless group is termed the shear-repulsion number, N,s,, 
defined as the measure of convective force to electrostatic repulsive force 

(9.2.1 1) 

Finally, we introduce the shear-attraction number, NSA, which is that group 
characterizing the magnitude of the viscous energy to the van der Waals 
attractive energy 

(9.2.12) 
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The dimensionless groups defined by Eqs. (9.2.10)-(9.2.12) can be used to 
illustrate the essential features of suspension rheology, in particular they make 
clear the important role of particle size. The shear-repulsion number increases as 
the square of the particle size, while both the Peclet number and the shear- 
attraction number increase as the cube. The parameters therefore increase 
rapidly with increasing particle size, implying a rapid increase in the relative 
importance of shear forces. The limit of very large values of these parameters 
corresponds to what is generally termed the high shear limit. This limit does not 
require high shear rates and more generally it attains as a result of large, 
non-colloidal particle sizes. 

To numerically illustrate the effect of particle size on the dimensionless 
groups, we note that in water at  standard temperature for a = 100 p m ,  a 5 
potential of 10 mV, and A = J, we have Pe = l o6  r, N,, = lo2 y, and 
N,, = lo5 r. Clearly for 100 p m  particles, all of the dimensionless groups are 
very large compared to unity even at a shear rate of 1 s-I. In the high shear 
limit, non-Newtonian behavior should vanish and the viscosity should attain a 
stationary value independent of the shear rate. We note here the analogue 
between the high shear limit for suspensions and the infinite-shear-rate-viscosity 
limit for polymers discussed above. 

For colloidal particles, the dimensionless parameters are generally small 
and non-Newtonian effects dominate. Considering the same example as above, 
but with particles of radius a = 1 p m ,  the parameters take on the values Pe = +, 
N,, = i / ,  and N,, = l o - '  i /  so that for shear rates of 0.1 s - '  or less they 
are all small compared to unity. The limit where the values of the dimensionless 
forces groups are very small compared to unity is termed the low shear limit. 
Here the applied shear forces are unimportant and the structure of the suspen- 
sion results from a competition between viscous forces, Brownian forces, and 
interparticle surface forces (Russel et al. 1989). If only equilibrium viscous 
forces and Brownian forces are important, then there is well defined stationary 
asymptotic limit. In this case, there is an analogue between suspensions and 
polymers which is similar to that for the high shear limit, wherein the low shear 
limit for suspensions is analogous to the zero-shear-rate viscosity limit for 
polymers. 

With surface forces absent, in the limit of Pe 4 1, the distribution of 
particles is only slightly altered from the Einstein limit. To  order + 2 ,  which takes 
into account two-particle interactions, Batchelor ( 1977) calculated the effect of 
Brownian motion on the stress field in a suspension of hard spheres and 
determined the low shear limit relative viscosity to be given by the Einstein 
relation with an added term equal to 6.24'. This result is found to agree 
satisfactorily with experiment for + 5 0.1. Because of the general complexity of 
the low shear limit with interparticle surface forces, including questions as to the 
existence of a uniquely defined asymptotic limit, we choose not to discuss this 
case further, instead referring the reader to Russel et al. (1989) and van de Ven 
(1989).  

To demonstrate the effect of Peclet number, Krieger (1972), in a series of 
classic experiments, measured the relative viscosity of suspensions of monomod- 
al spheres with sizes from about 0.1 to 0.5 p m .  By adjusting the solution 
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electrolyte concentration he was able to minimize any surface force effects. He 
found that when the relative viscosity was plotted against the reduced shear 
stress T,  = 7a3 /kT ,  where T is the actual shear stress, all of the data for the 
different size particles and suspension media fell on a single curve for a given 
particle volume fraction. Some of his data for polystyrene spheres are shown in 
Fig. 9.2.3. 

The reduced shear stress is recognized to be essentially our Peclet number 
defined by Eq. (9.2.10). As can be seen from Fig. 9.2.3, as the Peclet number is 
increased, the viscosity reaches a stationary value and in this limit the suspen- 
sion behaves as a Newtonian fluid. In the opposite limit, as the Peclet number 
tends to zero, the relative viscosity approaches a higher stationary value. The 
transition is seen to take place in the neighborhood of a Peclet number close to 
unity, consistent with our earlier discussion. 

For rigid particle suspensions and dilute polymer fluids, where Peclet 
number is the governing parameter, we have seen that in a steady simple shear 
flow, there are analogous behaviors of viscosity with Peclet number, including 
the existence of low and high Peclet number stationary limits. The dependence 
of the polymer viscosity on Peclet number is, however, much stronger than that 
of the suspension viscosity. This may be attributed to the fact that for the dilute 
polymer solution, the polymer molecules are deformable so that with increasing 
shear rate the individual polymers will elongate with an effective decrease in 
viscosity. On the other hand, for a rigid particle suspension, the Peclet number 
effect is smaller since the principle consequence of increasing shear rate is the 
loss of the Brownian motion forces. If the suspension is dilute, interparticle 
forces are absent because of the large separation distance, that is, the particle 
separation distance is irrelevant. It is only when the volume fraction is increased 
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Figure 9.2.3 Relative viscosity as a function of reduced shear stress for monodisperse 
colloidal polystyrene spheres of different sizes in different fluids (benzyl alcohol, meta- 
cresol, and water) at 50% volume fraction (after Krieger 1972). 
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to the point where two-body and higher order interactions become important 
that the Peclet number effect manifests itself for spherical particles. 

The practical consequence is that a polymeric fluid will evidence a far 
stronger non-Newtonian shear thinning behavior than will a suspension. This 
can result in a fairly wide range in the “power law” exponent with the exponent 
n in Eq. (9.1.8) ranging between 0.1 and 0.6 for typical polymeric liquids (Bird 
et a]. 1987), a behavior not found in suspension rheology. 

Another significant distinction, which has previously been noted, is that 
polymeric liquids will generally maintain uniform concentrations, whereas 
suspensions with volume fractions greater than, say, 20-25% develop con- 
centration gradients in non-uniform shear flows. Under these conditions a 
general approach for specifying the problem, even in the simple case of pipe 
flow, is not at  hand. 

9.3 High Shear Limit Behavior of Suspensions 

In the last section we introduced the concept of two “asymptotic” viscosity 
limits for shear thinning colloidal suspensions as a function of shear rate. One is 
the high shear limit which corresponds to high values of the Peclet number 
where viscous forces dominate over Brownian and interparticle surface forces. 
Generally this limit is attained with non-colloidal size particles since to achieve 
large Peclet numbers by increase in shear rate alone requires very large values 
for colloidal size particles. In this limit, non-Newtonian effects are negligible for 
colloidal as well as non-colloidal particles. 

In discussing the high shear limit, it is assumed that inertial effects 
resulting from the high shear rates or large particles are small and can be 
neglected. It may be noted that in this limit, attempting to account for 
two-particle hard-sphere interactions to obtain the relative viscosity to (I($’) in 
a simple shear flow fails, there being no unique steady state solution. However, 
with some assumptions Batchelor & Green (1972) found the coefficient of the 
4’ term to be about 5.2. 

A very large number of experimental and theoretical papers have been 
published over the many years that suspension rheology has been studied in an 
effort to determine the high shear relative viscosity for monodisperse suspen- 
sions as a function of solids volume fraction. A significant portion of these 
efforts have been devoted to spherical particles. At dilute and semi-dilute 
concentrations, below about 15% volume fraction, there is relatively little 
disagreement between the many sets of data. There is also general agreement 
among experiments that the relative viscosity increases with increasing solids 
volume fraction monotonically and that it tends to infinity asymptotically. It 
does this with the solids volume fraction asymptoting to some maximum 
packing fraction $,,, the terminology implying that the suspension cannot be 
packed in a denser fashion and still retain its fluid-like behavior. Alternatively, 
this limit is termed the fluidity limit. The maximum packing fraction is derived 
from experiment by extrapolation, which may involve the use of semi-empirical 
models. This is necessitated by the fact that for practical reasons, it is not 
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possible to obtain a steady viscosity measurement closer than about 5% to the 
maximum packing fraction. 

For suspensions of uniform spherical particles, there is considerable vari- 
ation in the reported high shear maximum packing fraction, ranging from about 
0.53 to 0.71. The reader should note that the maximum attainable solid fraction 
for spherical particles is 0.74, corresponding to a face centered cubic structure. 
In Fig. 9.3.1 are shown the relative viscosity data that yield the maximum 
packing fraction bounds quoted. The curve through the data that gives the 
asymptote of 0.53 is obtained from a semi-empirical equation valid for 4 2 0.25 
that is discussed below. The curve through the data that gives the asymptote of 
0.71 is from another semi-empirical model that is also discussed below. Shapiro 
and Probstein (1992) conclude that there is in fact not a single value for the 
maximum packing fraction but rather a range, with the higher values ascribable 
to a greater degree of ordering of the particles. Their results suggest that the 
extent of the ordering in a given viscometric experiment is not a uniquely 
definable quantity but rather depends upon the system and the initial and 
boundary conditions imposed. 

Shapiro & Probstein following earlier suggestions (Sengun & Probstein 
1989a, Onoda & Liniger 1990) showed indirectly, from both viscosity experi- 
ments of the type illustrated in Fig. 9.3.1 and measurements of the dry random 

0.2 0.4 0.6 0.8 
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Figure 9.3.1 High shear limit relative viscosity for monodisperse spherical particles as a 
function of solids volume fraction. Circles are data of Shapiro & Probstein (1992), 
squares are data of de Kruif et al. (1986), curves are semi-empirical equations. 
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Figure 9.3.2 (A) Comparison of maximum packing fraction from viscosity measure- 
ments and dry random packing results for bidisperse suspensions with particle size ratios 
of 2:1 and 4:l; (B) data replotted with dry random packing results divided by 1.19. 
[After Shapiro, A.P. & Probstein, R.F. 1992. Random packings of spheres and fluidity 
limits of monodisperse and bidisperse suspensions. Phys. Rev. Lett. 68, 1422-1425. 
Copyright 1992 by the Am. Phys. Soc. With permission.] 
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close packing of spheres, that the lower bound on the maximum packing 
fraction (-0.53) corresponds to a random suspension microstructure. 

The justification for the above conclusions is based on the experimental 
results shown in Fig. 9.3.2 for bidisperse noncolloidal suspensions with particle 
size ratios of 2 : 1 and 4 : 1 for different fractions of the large particles. When the 
large particle fraction is either 0 or 1, this corresponds to a monomodal 
suspension, The figure shows the lower bound maximum packing fraction 
derived from Couette viscometer experiments through extrapolations of the type 
shown in Fig. 9.3.1, together with the dry random close packings of the 
spherical beads. The dry random packings are determined by pouring beads into 
graduated cylinders which are then vibrated for several hours after which the 
total volume is measured and divided into the known particle volume. It is well 
known from experiment that the dry random close packing for monomodal 
spherical particles is 0.63. 

The shapes of the curves in Fig. 9.3.2A are seen to be strikingly similar. 
Figure 9.3.2B shows the same data except that the random close packing 
concentrations have been scaled by dividing by the ratio of the dry random 
packing to the lower bound viscometric maximum packing fraction for mono- 
disperse spheres; 0.63/0.53 = 1.19. The value 1.19 is termed the filler dilatancy 
factor. The good agreement between the scaled dry packing fraction and the 
lower bound maximum packing fraction suggests that the suspension near the 
lower bound maximum packing fraction is of random structure. Moreover, this 
correlation allows the lower bound maximum packing fraction to be determined 
independently of viscometry experiments. These results have also been extended 
to high values of the particle size ratio and to polydisperse suspensions of 
noncolloidal spherical particles. Similar results were again found with the same 
value of the filler dilatancy factor (Probstein et al. 1994). 

A rational and fundamental theoretical determination of the high shear 
limit relative viscosity as a function of volume fraction for concentrated 
suspensions, even for monomodal spherical particles, is a difficult matter as we 
have seen from our brief discussion of Batchelor & Green’s efforts for a 
semi-dilute suspension. Most approaches to the problem have been semi- 
empirical and make use of an assumed knowledge of the maximum packing 
fraction. If the appropriate maximum packing fraction is the lower bound 
maximum packing fraction, which is obtainable from simple dry packing 
experiments independent of viscosity experiments, this makes the evaluation of 
such semi-empirical models both simpler and more reliable. van de Ven (1989) 
has pointed out that there are a t  least 100 semi-empirical relations between 7: 
and 4 in the literature, where we use the ~0 superscript to denote the high shear 
limit. In what follows we discuss two of the basic forms. 

We first present the derivation, as outlined by van de Van (1989), of the 
widely used Krieger-Dougherty expression for the high shear limit relative 
viscosity. In deriving this relation, the concept of intrinsic viscosity is used 
although here, in contrast with the definition in polymer rheology, it is defined 
with volume fraction in place of density (Eq. 9.2.12) thereby making it 
dimensionless. To distinguish these two intrinsic viscosities, here we use the 
symbol [qld so that 
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( 9.3.1 a) 

or  

r l =  P [ 1  + [77l441 (9.3.1 b) 

where p is the viscosity of the suspending medium. Note that in the limit of 
small 4 with 

to which is 
added a small number of particles of volume fraction +2 < 1. From Eq. (9.3.lb) 
the viscosity of the new suspension is given approximately by 

= 2.5, this is just the Einstein relation. 
Assume a suspension having a suspended volume fraction 

There is, however, an excluded volume effect since when the particle fraction +2 

was added, not all the fluid volume was available, part being already taken up 
by the particle fraction 4,. Krieger and Dougherty therefore assumed that the 
volume fraction available to the new particles was only 1 - k41,  where k is a 
constant termed a crowding factor. It follows that Eq. (9.3.2) should be written 

(9.3.3) 

With 1177 the change in viscosity associated with the increase in volume 
fraction A 4  = &, we write 

or in the limit as A 4  -+ 0 

(9.3.4) 

(9.3.5) 

which can be integrated to give 

where p is the Newtonian viscosity of the particle free fluid. 
Since the apparent viscosity q - - f a  as 4 -  1 / k ,  it follows that 1 lk: may be 

interpreted as the maximum packing fraction 4,,,. The high shear limit relative 
viscosity may therefore be 

This is one form of the 

written 

(9.3.7) 

Krieger-Dougherty relation, which for 4 -+ 0 and 
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[7]+ =2.S goes to the Einstein limit. Numerous modifications to this relation 
have been made including those by van de Ven (1989) who approximately has 
taken account of the fact that k = k ( ( b ) .  It is evident that, except at  very small 
volume fractions, the expression for the high shear viscosity is critically depen- 
dent on the value of the maximum packing fraction. 

The equation used to fit the data of the high shear limit relative viscosity 
giving (bm = 0.71 in Fig. 9.3.1 is Eq. (9.3.7) with the exponent [7]+(b,,, = 1.93 
(de Kruif et al. 1985). This corresponds to a value of [77]+ = 2.72 which, 
although not equal to, nevertheless closely approximates the Einstein limit for 
small (b. 

Another semi-empirical expression derives from the widely used work of 
Frankel & Acrivos (1967) who assumed a dense suspension of monomodal 
spherical particles, where the particle separation is small compared to the 
particle radius. In this limit the dissipation is taken to be governed by lubrica- 
tion forces associated with the relative velocity of the particles along their line of 
centers. In the low volume fraction or dilute limit, this effect vanishes and the 
dissipation is close to that associated with the externally applied shear rate. 
Sengun & Probstein (1989a) calculated the dissipation in a unit cell assuming 
the total dissipation a t  any volume fraction to be given by the linear sum of the 
two dissipations. 

The result for the relative viscosity is shown to be given by 

where C is an undetermined proportionality constant of O( 1) and p is the ratio 
of the particle diameter to the minimum separation distance between the particle 
surfaces. Here, p is a key parameter because it characterizes the average effective 
surface separation which is critical in any lubrication type flow. To express p in 
terms of (b requires the selection of a specific configuration for the spherical 
particles. This problem is sidestepped by introducing the maximum packing 
fraction, (b,,, and writing 

(9.3.9) 

In this way, p is related to the particle volume fraction in terms of the maximum 
packing fraction such that the separation between the particle surfaces ap- 
proaches zero in the limit (b+ (bm. It is to be noted that Eq. (9.3.9) is obtained 
if it is assumed that the effective microstructure of a flowing suspension is a 
simple cubic ((b,m = O.S2), or body centered cubic ((bm = 0.68), or  face centered 
cubic ((bm = 0.74). It is therefore assumed that Eq. (9.3.9) is also applicable to 
other effective suspension microstructures such as the random microstructure. 
Equation (9.3.8) is appropriate only for high solid volume fractions (4 k 0.25) 
since it was developed for concentrated suspensions for which the average 
separation distance between two similar size particles is close to or less than the 
particle size. 
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The equation used to fit the data of the high shear limit relative viscosity 
giving +,* = 0.53 in Fig. 9.3.1 is Eq. (9.3.8) with C = 1.5 found to give the best 
fit to the viscosity data (Shapiro & Probstein 1992). This equation was also 
used for determining q5,,, for the bidisperse data of Fig. 9.3.2. 

As the separation between particle surfaces approaches zero with increas- 
ing solids volume fraction, particle surface roughness and deformity may be 
expected to play an important role. The value of the volume fraction above 
which such effects are significant should depend on the properties of the 
suspension and may possibly be located by an abrupt change in the slope of the 
viscosity versus volume fraction curve. Above this value, high shear limit 
viscosity expressions such as Eqs. (9.3.7) or (9.3.8) are not expected to be 
applicable. In this regard, from an engineering point of view, the maximum 
packing fraction should be considered to be a parameter that characterizes the 
suspension viscosity through semi-empirical relations, as those given here, up to 
a value close to but somewhat smaller than +,,, say, to within a couple of 
percent. 

I t  has been shown (Adler et al. 1990) from a rigorous asymptotic, 
lubrication-theory analysis that lubrication concepts cannot lead to a singular 
behavior of the viscosity of a spatially periodic suspension in which layers of 
particles slide past one another. This means that the use of Eq. (9.3.8), for 
example, which employs lubrication concepts to characterize suspension viscosi- 
ty  is limited to suspensions where particle layering does not take place, for 
example, where the microstructure is random. 

Cell models akin to those discussed in Section 8.5 have also been applied 
to the determination of the properties of concentrated suspensions (Happel & 
Brenner 1983, van de Ven 1989). Although it is another method which has been 
used to obtaining approximate expressions for the high shear relative viscosity, 
we choose not to expand upon it here, instead referring the reader to the 
references cited. One of the difficulties is that the determination of the boundary 
conditions at  the cell surface is somewhat arbitrary. Furthermore, expressions 
obtained by this approach indicate that the cell model is inappropriate for 
highly concentrated suspensions and is most satisfactory only at  low to moder- 
ate concentrations. 

Although the discussion of the high shear limit viscosity relations has 
centered on monomodal spherical suspensions, Probstein et al. ( 1994) have 
shown the applicability of Eq. (9.3.8) to bidisperse and polydisperse suspensions 
experimentally and on theoretical grounds. 

9.4 Bimodal Model for Suspension Viscosity 

In this section we turn our attention to bidisperse suspensions, following which 
we will briefly discuss polydisperse suspensions. It is known that for a bidisperse 
suspension the relative viscosity decreases significantly in comparison to that of 
a monodisperse suspension of the same material and with the same solids 
volume fraction. 



Bimodal Model for Suspension Viscosity 299 

Chong et al. (1971) measured the high shear limit viscosity of bimodal 
suspensions of spherical glass particles. Their results showed that a t  a given total 
solids volume fraction, the viscosity decreased as the ratio of the large to small 
particle size increased. However, above a ratio of 10 : 1 the viscosity remained 
relatively insensitive to any further increase in this parameter. These results 
confirmed the pioneering study of Fidleris and Whitmore (1961), who observed 
that when a large particle is dropped in a suspension of much smaller particles, 
such that the large particle size is at  least ten times bigger than the small particle 
size, the drag experienced by the large particle is the same as for the motion of 
the large particle through a pure liquid having the same density and viscosity as 
the suspension. 

From the above observations and from the discussion of the forces 
governing suspension rheology, Probstein & Sengun (1987) (see also Sengun & 
Probstein 1989b) introduced a model to characterize the viscous behavior of 
concentrated suspensions. In their model the suspension is bimodal, wherein it is 
made up of a colloidal fine fraction and a coarse fraction of noncolloidal 
particles. 

Truly bimodal suspensions of colloidal and noncolloidal particles are of 
considerable practical interest. For such suspensions at  low shear rates, the 
viscosity is high so that, for example, during storage, settling is reduced. On the 
other hand, because the mixture is shear thinning, at  higher shear rates when the 
suspension is pumped the viscosity decreases, thereby enabling the mixture to be 
pumped a t  a lower pressure drop. 

The important feature of the bimodal model is that the colloidal fraction is 
assumed to act independently of the coarse fraction and to impart to a stable 
suspension most of its important non-Newtonian characteristics such as its 
shear thinning behavior. The large particles are unaffected by the colloidal 
forces and essentially are unaware of the existence of the colloidal particles. 
Instead, the large particles see a “stiffened” single phase fluid with the same 
rheological behavior as the colloidal suspension, and contribute to the viscosity 
rise solely through hydrodynamic dissipation. We note that the two fractions are 
not completely, but are largely, independent. For example, as the volume 
fraction of the coarse particles increases, the colloidal fraction that is squeezed 
out  from between the coarse particles will experience a shear higher than that 
applied by the viscometer walls and this must be accounted for (Sengun & 
Probstein 1 9 8 9 ~ ) .  These nonindependence effects are not considered here. 

The relevant independent variables of the problem are the various particle 
volume fractions. In the bimodal model, the total volume fraction of the solid 
particles, for example, is 

v, + v 
d+ = v, + v, :v, (9.4.1) 

where V, is the volume of the coarse particles, Vf the volume of the fine particles, 
and V, the volume of the carrier liquid. 

According to the model, the behavior of the colloidal particles plus liquid 
mixture is independent of V, and is governed by what is termed the fine fillev 
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volume fraction defined by 

V 
+ff = + (9.4.2) 

while the viscosity rise due to the coarse particles is characterized by the coarse 
volume fraction defined by 

v c  

+c = v, + vr + v, (9.4.3) 

According to the bimodal concept, the net relative viscosity, v,,,,, of a 
bimodal suspension is given by 

(9.4.4) 

Here, q f l ,  is termed the fine relative viscosity and represents the contribution of 
the colloidal size particles. It is defined by the ratio of the apparent viscosity of 
the mixture of suspending liquid plus fine particles, qf, to the viscosity of the 
suspending liquid, p. The quantity, v,,, is termed the coarse relative viscosity 
and is the contribution of the coarse particles to the net relative viscosity. It is 
defined by the ratio of the apparent viscosity of the coarse suspension, T ~ ,  to the 
apparent viscosity of the fine fraction, vf. 

Because of the large characteristic size of the coarse particles, as discussed 
in Section 9.2, even at relatively low shear rates, say, 1 s-  I, the dimensionless 
force groups Eqs. (9.2.10)-(9.2.12) are all very large compared to unity and v,, 
will exhibit a shear rate independent behavior characteristic of the high shear 
limit. 

Equation (9.4.4) may be usefully written in the form 

According to the bimodal model, qcr is independent of the shear rate so that if 
logq,,, and logr]f, were plotted against the logarithm of the shear rate on the 
same graph, the curves should be parallel and the difference between the curves 
should be equal to logr],,. 

An application of the bimodal model to truly bimodal coal-water suspen- 
sions was carried out by Sengun and Probstein (1989b,c). First they measured 
the viscosity versus shear rate of a colloidal coal-water suspension with an 
average particle size of 2.3 p m  and fine filler volume fraction qhff = 0.30. Their 
experimental results are represented by the solid line in Fig. 9.4.1, where the 
colloidal effects are evidenced by the strongly non-Newtonian shear thinning 
behavior. Next they added to the same suspension coarse coal particles in the 
size range 200-300 p m  and their viscosity measurements for a coarse volume 
fraction 4, = 0.52 are represented by the triangles in Fig. 9.4.1. The dashed line 
drawn through these experimental points is just the fine relative viscosity curve 
shifted upward so that it is parallel to the initial curve, with the amount of the 
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Figure 9.4.1 Relative viscosity of a bidisperse coal slurry made up of a colloidal fine 
fraction of mean diameter 2.3 p m  and a noncolloidal coarse fraction of 200-300 p m  
particles of mean diameter about 250 p m  as a function of shear rate. The volume 
fraction of the colloidal particles $,f = 0.30 and of the coarse particles &c = 0.52. The 
solid line is a mean curve through the measured viscosities of the colloidal fraction. The 
triangles are the experimental points for the measured viscosity for the fine plus coarse 
mixture. The dashed line is the fine relative viscosity experimental curve redrawn through 
the data points to illustrate the parallelism. The upward shift of this curve corresponds to 
a coarse relative viscosity log 7," = 2.13. [After Sengun, M.Z. & Probstein, R.F. 1989. 
Bimodal model of slurry viscosity with application to coal-slurries. Part 2. High shear 
limit behavior. Rheol. Actu 28, 394-401. Steinkopff Darmstadt. With permission.] 

shift given by log q = 2.13. This contribution is just the contribution of the 
coarse relative viscosity. The near perfect parallelism between the data for the 
net relative viscosity and  the data for the fine relative viscosity is a striking 
confirmation of the validity of the bimodal model. It indicates that the colloidal 
and  the coarse fractions do behave independently of each other and the 
shear-dependent behavior is caused solely by the colloidal fraction. Independent 
high shear limit viscosity measurements of suspensions of only the coarse 
particles showed close agreement with the values obtained by differencing 
curves typical of Fig. 9.4.1 (Sengun & Probstein 1 9 8 9 ~ ) .  

It should be noted that Farris (1968) developed a bimodal model for 
polydisperse suspensions in which the fine and  the coarse fractions were also 
assumed to behave independently of each other. However, the arguments were 
purely geometric and  the issues reIated to  the non-Newtonian character of the 
viscosity were not treated. 

The  bimodal model just described has been successfully applied in the high 
shear limit to disperse suspensions with a very large particle size ratio (Probstein 
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et al. 1994). I t  has been shown using the bimodal model that the viscosity of 
such suspensions can be calculated using monodisperse viscosity data. This led 
to results for the maximum packing fraction in agreement with experiment and 
consistent with the data of Fig. 9.3.2. 

The bimodal model has also been applied to polydisperse suspensions 
(Probstein et al. 1994), which in practice generally have particle sizes ranging 
from the submicrometer to hundreds of micrometers. In order to apply the 
bimodal model to a suspension with a continuous size distribution, a rational 
procedure is required for the separation of the distribution into “fine” and 
“coarse” fractions. Such a procedure has not been developed so that an inverse 
method had to be used wherein the separating size was selected which resulted 
in the best agreement with the measured viscosity. Again, however, the relatively 
small fraction of colloidal size particles was identified as the principal agent that 
acts independently of the rest of the system and characterizes the shear thinning 
nature of the suspension viscosity. 
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Problems 

9.1 a. Consider the fully developed flow in a channel of a non-Newtonian 
fluid with a viscosity that obeys the power-law model of Eq. (9.1.8). 
The  channel width is 2h and  the flow is in the x-direction. Show that 
the volumetric flow rate Q is given by 

b. Assume the fluid to behave as a Bingham plastic (Eq. 9.1.7) instead of 
a power-law fluid. With 2 2 ,  the width of the core o r  plug region, 
show that the volumetric flow rate is now given by 

9.2 The  power-law fluid of Problem 9.1.la is squeezed out from between two 
circular disks of radius R, by the top disk approaching the stationary 
bottom disk a t  a speed V. When the distance separating the disks, 2h, is 
small compared to R ,  show that the normal force F on  the disks is given by 
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9.3 In the dumbbell model, a polymer chain in a solvent is pictured as two 
massless spheres of equal size connected by a frictionless spring. The 
spheres experience a hydrodynamic drag proportional to their size, char- 
acterized by the Flory radius. Assume that the displacement of the spring 
generated by the thermal energy is also characterized by the Flory radius. 
Write the equation of motion for the dumbbell and show that the 
characteristic relaxation time for the chain deformation is that given by 
Eq. (9.2.1). 
Assume that the crowding factor, k ,  in Eq. (9.3.5) varies linearly with 4 
from the value k, at 4 = 0 to 1 /4,,, at  4 = (6,n. What form does the 
viscosity expression take under this assumption? 
Consider the fully developed flow of a stable suspension of spherical 
particles through a pipe of radius a = 5 mm. The suspending medium is 
water with a total solids volume fraction of 0.26. The applied pressure 
gradient, G, along the pipe is 1750Pa m-'. 
a. Assume that the particles are colloidal and monomodal in size. 

Determine the volumetric flow rate, Q, for the following experimen- 
tally determined shear viscosity behavior 

9.4 

9.5 

Newtonian behavior with In 7, 
2.184 - - 

1 - 3.144 

for lo2 s - '  < y < 10' s C '  

for i, > io 's- '  

power-law behavior with qr = (m/p)i ,"- '  

Newtonian behavior with 7, 
= (1 - 4/0.71)-1'93 

where i /  is the magnitude of the shear rate, and 4 the solids volume 
fraction. 
Assume now that the suspension is bimodal with equal volumes of 
colloidal and coarse particles. The total solids volume fraction is the 
same as in Part a, and the colloidal fraction has the same viscosity 
behavior, The coarse particles are very large compared to the colloidal 
particles, so that they are not affected by colloidal forces. Determine 
the volumetric flow rate, Q, and compare the result with that obtained 
in Part a. 

b. 



10 Surface Tension 

10.1 Physics of Surface Tension 

The effects of surface and interfacial tensions give rise to so many commonplace 
phenomena observed in liquid behavior that we often take for granted the 
complex physical-chemical interactions involved, not all of which are under- 
stood even today. Among the many familiar examples of surface tension effects 
are the formation of soap bubbles that float gently upward until they break, or 
the thin capillary tube in which a liquid will rise to a height greater than the 
pool in which it is placed. There is also the breakup into drops of a stream of 
water flowing out of a faucet, the physics of which is the basis of the ink jet 
printer o r  gel encapsulation processes to encase everything from monoclonal 
antibodies to perfume. Or  there is the phenomenon of a liquid drop remaining 
stationary when placed on a solid surface, as well as the opposite situation of 
the spreading of a drop of water when placed on a clean glass surface. The 
examples, both observed and applied, that result from interfacial effects between 
liquids, gases, and solids are indeed numerous. 

Interfacial phenomena attracted considerable scientific attention from the 
18th century onward. At first the attempts to characterize the different be- 
haviors were mechanical, where the liquids were described as being stretched at 
their interfacial surface like a membrane, with a state of tension existing there. 
Today we know that the liquid state itself is composed of molecules in motion 
that are kept relatively close to  each other by attractive van der Waals forces. 
However, a principal method of analysis of problems of interfacial effects rests 
upon the assumption that the liquid can be described by a continuum mean-field 
approximation or mean molecular field, wherein it is assumed possible to define 
an element of the liquid that is small compared to the range of the intermolecu- 
lar force but large enough to contain a sufficient number of molecules. This 
approximation implies that on average the attractive force on any molecule in 
the liquid is the same in all directions, giving to the liquid its fluid charac- 
teristics. 
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The above argument cannot hold, for example, at a liquid-gas interface 
since although the molecules are free to move in the liquid, their motion is far 
more restricted than in a gas where there is little attraction between the 
molecules. The attraction between the liquid molecules will prevent but a small 
fraction of them from escaping (vaporizing) into the gas. Therefore, the liquid 
molecules at  the interface are attracted inward and to the side, but there is no 
outward attraction to balance the pull because, by comparison, there are not 
many liquid molecules outside in the gas (see Fig. 10.1.1). As a result, the liquid 
molecules at the surface are attracted inward and normal to the liquid-gas 
interface, which is equivalent to the tendency of the surface to  contract (shrink). 
The surface of the liquid thus behaves as if it were in tension like a stretched 
membrane. We emphasize, however, that there really is not a macroscopic 
smooth meniscus-type surface at  which the molecular concentration changes 
discontinuously from that of the liquid phase to that of the gaseous phase. 
Rather, this change between the two phases takes place continuously over a 
small distance of about 100nm or less. 

An alternative description from an energetic point of view follows from 
the fact that because a liquid molecule at  a liquid-gas interface must be attracted 
to less neighboring molecules than one in the interior of the fluid, the attractive 
energy per molecule at the surface must then be some fraction of that in the 
interior. The energy of a surface molecule is therefore higher than that of one in 
the bulk liquid, so energy must be expended to  move a molecule from the 
interior to the surface. However, since the free energy of the system will tend to 
a minimum, the surface of the liquid phase will tend to contract. With v the 
force per unit length tending to contract the surface, we may therefore write 
that, at constant temperature and volume for a given number of moles of 
system, 

d F  

d A  
( T = -  

Gas 

(10.1.1) 

Figure 10.1.1 
for a plane liquid-gas interface. 

Attractive forces between molecules a t  surface and in interior of a liquid 
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where 
F = E - T S  (1 0.1.2) 

is the Helmholtz free energy (capital letters indicating the extensive form). 
Equation (10.1.1) simply states since d F  will decrease together with a decrease 
in d A  (that is, surface contraction), then (T will be positive. The quantity (T is 
called the surface tension and is usually given in units of force per unit length. 
Table 10.1.1 shows some values of surface tensions for pure liquids interfacing 
with the vapor phase. 

It can readily be shown (Davies & Rideal 1963) that, provided the 
viscosity of the liquid is not very high, the surface tension is equal to the 
Helmholtz free energy per unit area of surface, and hence also has the equivalent 
dimensions of energy per unit area. From the definition of the Helmholtz free 
energy applied at the surface, it also is easily demonstrated that the surface 
tension decreases with increasing liquid temperature; that is, 

d a  
- < 0  
dT 

(10.1.3) 

In practice, c decreases very nearly linearly with increasing temperature. A 
typical value is about -0.1 mN m-’ K-’. 

I t  is well known that an insoluble adsorbed monolayer at the surface will 
also lower the surface tension because the adsorbed molecules will tend to 
“spread” the surface and hence lower the surface tension since it tends to 
contract the surface. Surface-active materials that are strongly adsorbed at an 
interface in the form of an oriented monomolecular layer (monolayer) are 
termed surfactants and are capable of reducing the surface tension of water or 
aqueous solutions by up to five orders of magnitude. The degree of surface 
activity of a material will depend on its surface adsorption and its mixing in the 
aqueous phase. Inorganic ions in water are not surface active because they are 
“pulled” into the aqueous phase. On the other hand, typical aqueous surfactants 
such as detergents are organic compounds with a long-chain hydrocarbon tail 
and a polar head. It is well known that hydrocarbons are relatively insoluble, 
water being highly polar. An ideal surfactant behavior is shown in Fig. 10.1.2, 

Table 10.1.1 
Surface Tensions of Liquid-Vapor Interfaces at 

20°C a 

U 

mN m-’ 

Water 
Nitromethane 
Benzene 
Methanol 
Mercury 

72.88 
32.66 
28.88 
22.50 

486.5 

“Adamson (1982). 
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Air 
Monolayer I Water 

Figure 10.1.2 Schematic of surfactant monolayer. 

where the polar molecules adsorb at the surface as a monolayer with the 
hydrocarbon tails “up” and the polar heads “down.” It is not difficult to show 
that it takes a relatively small number of surfactant molecules to form a 
monolayer and thereby greatly reduce the surface tension of water, which is 
relatively high. 

The effect of surface-active materials in altering surface tension is ex- 
pressed quantitatively through the Gibbs equation, which relates the change in 
surface tension to the concentration of surface-active materials. The relation 
takes a particularly simple form for a two-component dilute solution consisting 
of a solvent and a single solute. If the surface excess concentration (mol me2)  of 
the adsorbed solute is denoted by r and c is the bulk molar concentration, then 

(10.1.4) 

The Gibbs equation shows that there is a decrease in surface tension with an 
increase in concentration of a particular solute that is positively adsorbed at  an 
interface. 

Although at low concentrations the surfactant molecules behave in- 
dependently, at higher concentrations they aggregate to form micelles. The 
micelles are roughly spherical and typically contain about 50 to 100 molecules. 
An ionic micelle is shown schematically in Fig. 10.1.3. The polar heads are in 
contact with the water, and surrounded by a double layer shell, while the central 
core of the micelle is essentially water free, being made up of the hydrocarbon 
tails. The concentration at  which micelle formation begins is called the criticd 
vnicelle concentration. Above this critical value the concentration of free surfac- 
tant molecules is essentially unchanged and, therefore, so is the surface tension. 
Any further addition of surfactant molecules would only go into micelle 
formation (Hiemenz 1986). 

Extending our molecular picture to include kinetic considerations, we can 
show that the time for a liquid surface to take up its equilibrium value of surface 
tension is very short. The time may be estimated from the kinetic theory relation 
t = 12/D, where D is the diffusion coefficient and 1 is approximately equal to the 
lattice spacing. This time characterizes the time for molecules at the surface to 
exchange with those in the immediate bulk below. With D - l op9  m2 s-’ and 
1 - 0.3 nm (the diameter of a water molecule), we find t - lO-’Os ,  which is 
indeed very small. In practice, the time is somewhat larger than this, but 
nevertheless extremely small. 
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Figure 10.1.3 Schematic of an aqueous ionic micelle. 

Another time of interest is the residence time of a molecule at the surface 
that is in equilibrium with the surrounding vapor, that is, where the number of 
molecules evaporating are equal to those condensing from the vapor phase. This 
time is much larger than that to take up the equilibrium surface tension value, 
but nevertheless is still quite small. Considering water vapor, D - m2 s-' 
and 1 - 0.1 p m  at atmospheric conditions. An estimate of the rate of collision of 
the vapor molecules with the liquid surface is then D/12 or lo's-'. Taking the 
fraction of molecules that strike the surface and condense on it to be about 0.1 
gives a lifetime for a molecule on the surface before it evaporates to be about 
lO-'s. This rate still indicates a very rapid change and strong agitation at the 
surface. In actuality mass transfer boundary layer resistance makes the rate 
considerably lower, particularly in the presence of external hydrodynamic 
effects. 

The above discussion for a liquid-gas interface is also applicable to a 
liquid-liquid interface between two immiscible liquids with an interfacial tension 
acting at  the interface. As before, there is an imbalance of intermolecular forces, 
although smaller. The magnitude of the interfacial tension usually lies between 
the surface tensions of each liquid. 

We have thus far restricted our discussion to plane interfaces. However, 
because of the existence of surface tension, there will be a tendency to curve the 
interface, as a consequence of which there must be a pressure difference across 
the surface with the highest pressure on the concave side. The expression 
relating this pressure difference to the curvature of the surface is usually referred 
to as the Young-Laplace equation. It was published by Young in 1805 and, 
independently, by Laplace in 1806. From a calculation of the p-V work required 
to expand the curved surface and so change its surface area, it is relatively 
straightforward to show that this equation may be written 

1 1  
AP = U( R, + R,) (10.1.5) 
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where R ,  and R ,  are the radii of curvature of the surface along any two 
orthogonal tangents (principal radii of curvature), and A p  is the difference in 
fluid pressure across the curved surface. Note that the individual contribution of 
either R ,  or  R ,  to the pressure difference is negative when moving radially 
outward from the corresponding center of curvature. As Eq. (10.15) is, written, 
it is applicable to arbitrarily shaped surfaces where the radii of curvature may 
change spatially. 

In the special case of a spherical bubble or  drop of either a liquid in gas, 
gas in liquid, or immiscible liquids, one obtains the well-known result: 

where p i  = internal pressure 
p ,  = external pressure 
a = bubble or  drop radius 

(10.1.6) 

This formula is consistent with the fact that in stable equilibrium the energy of 
the surface must be a minimum for a given value of bubble or drop volume, and 
a sphere has the least surface area for a given volume. For general curved 
surfaces the radius a in Eq. (10.1.6) is frequently taken to be the mean radius of 
curvature defined as half the sum of the inverse principal radii of curvature. For 
immiscible liquids (+ refers to the interfacial tension, which, for example, for 
benzene over water at  20°C is 35 m N  m-'. Obviously for a plane interface, 
where the mean radius tends to infinity, the pressure difference will be zero. 

The behavior of liquids on solid surfaces is also of considerable practical 
importance. However, the molecules or atoms a t  a solid surface, unlike those a t  
a liquid surface, are essentially immobile. Therefore, a solid-fluid interface will 
not have the same behavior as a fluid-fluid interface. For a planar interfaice, as in 
Fig. 10.1.1, with the gas replaced by a solid, the liquid molecules could be 
attracted more strongly to the solid surface than between the liquid molecules 
themselves, a situation representative of water on very clean glass. In this case 
the liquid molecules would be attracted outward to the interface, but the inward 
attraction to balance the pull would be less, so the liquid molecules would be 
attracted outward and normal. 

I t  is almost impossible with solid surfaces to obtain a purely planar surface 
free from inhomogeneities in contrast to a liquid surface, which can be made to 
have a high degree of homogeneity. Solid surfaces will therefore almost always 
be contaminated by impurities, which can have a marked effect on the surface 
tension. The impurities will manifest themselves most strongly a t  the surface 
since, as with a liquid, the surface molecules will be bonded to a smaller number 
of neighboring molecules than in the interior. For example, for a close-packed 
arrangement each molecule will be bound to 12 in the interior but only 9 on the 
surface and, as discussed previously with a liquid, will have a correspondingly 
lower binding energy than inside the material itself. It is therefore difficult to 
define a priori either the magnitude or sign of the solid-liquid surface tension. 

Normally when a liquid drop is placed on a plane solid surface, it will be 
in contact not only with the surface but often with a gas such as air, as shown in 
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Fig. 10.1.4. The liquid may spread freely over the surface, or it may remain as a 
drop with a specific angle of contact with the solid surface. Denote this static 
contact angle by 8. There must be a force component associated with the 
liquid-gas surface tension u that acts parallel to the surface and whose mag- 
nitude is (T cos 8. If the drop is to remain in static equilibrium without moving 
along the surface, it has to be balanced by other forces that act at  the contact 
line, which is the line delimiting the portion of the surface wetted by the liquid, 
for example, a circle. I t  is assumed that the surface forces can be represented by 
surface tensions associated with the solid-gas and solid-liquid interfaces that act 
along the surface, rsg and us,, respectively. Setting the sum of the forces in the 
plane of the surface equal to zero, we have 

This equation, known as Young’s equation, was published in 1805, shortly 
before its independent publication by Laplace. 

As derived, Young’s equation follows only from an equilibrium force 
balance in the horizontal direction with no balance in the vertical direction. 
Since static equilibrium requires a balance of all forces, a normal force (per unit 
length) u s in  8 must act vertically downward on the solid at the contact line. 
Dussan V. (1979) has pointed out that such a force can exist, since the solid is 
modeled as a rigid body, but she and others have asked the question, “what 
restricts this force to a vertical component?” Allowing for a horizontal com- 
ponent, all forces could be balanced for any value of the contact angle. At 
present there is no unambiguous resolution to this question, although Young’s 
equation can be deduced from thermodynamic considerations. 

A system is in static equilibrium if it is in a configuration of minimum 
energy, and it is this principle that Gibbs (1906) applied to deduce Eq. (10.1.7). 

Figure 10.1.4 
horizontal solid surface. 

Static equilibrium of a liquid drop in a gas at line of contact with a 



312 Surface Tension 

However, as far back as 1829 Gauss provided an alternative derivation based 
on the inclusion of a surface energy in the energy conservation equation, 
corresponding to the inclusion of surface tension in the momentum conservation 
equation (Dussan V. 1979). A simple demonstration of the minimurn energy 
derivation has been given by de Gennes (1985), and we repeat it here. 

Interfacial tension is interpreted as free energy per unit area, and the 
condition is applied that at equilibrium the total system energy must be 
stationary with respect to any infinitesimal displacement of the contact line. In 
Fig. 10.1.5 a liquid wedge is shown translated along the plane of the solid by an 
amount S x .  The translation does not affect the bulk energies since the pressure 
is unchanged in the liquid and the gas. The energy in the region of radius S x  is 
also unaffected since the material is simply translated. However, the interfacial 
area per unit depth of contact line is changed in an amount + a x  for the 
surface-gas area, -Sx for the surface-liquid area, and - S x  cos 8 for the 
liquid-gas area. The condition that the energy be stationary is then 

U, ,SX - u, ,Sx - U S X  cos 6 = 0 

which is just Young’s equation in the limit 6 x 4  0. 
Young’s equation may be written in the form 

c s g  - a;, k =  = cos 0 
0- 

(10.1.8) 

(10.1.9) 

where k is sometimes termed the wetting coeficient. Note that there is no 
restriction on the magnitude of a,, or a, or on the sign or magnitude of a,,, since 
their values depend on the appropriate intermolecular forces. The only state- 
ment that can be made is that k must lie between -1 and +1 (Rowlinson & 
Widom 1982). 

If the contact angle 8 is zero, k = 1 and spreading takes place completely 
over the solid surface. The solid is then termed “completely wetted.” If 
0 < k < 1, then 8 lies between 0 and r / 2 ,  and conventionally the solid is said to 

Figure 10.1.5 Translation from left to right of a liquid wedge interface. 
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be wetted by the liquid. However, it is clear that this statement gives an 
incorrect impression since the surface is actually only “partially wetted.” 

At the other extreme if k = -1, the contact angle 0 is 7r and the solid is 
completely unwetted. This limit is unrealistic but can be approached physically 
by assuming the liquid to be supported from the surface by a thin film of vapor. 
Here, as, is very large and positive with a value approaching a. If -1 < k < 0, 
then 8 lies between 7r and 7r/2, and conventionally the solid is said to be 
unwetted by the liquid. Again this statement gives an incorrect impression, since 
the solid is actually partially wetted, a,, not being large enough to inhibit 
solid-liquid contact. The extent of the wetting is less than in the range of 
0 < 8 < 1rI2. A physical example of 8 between ~r and n l 2  is mercury on glass, 
where 8 - 140”, a consequence of the very strong forces between the atoms 
within the liquid. 

I t  is usually pointed out in most texts on the subject of surface tension that 
no  equilibrium position of the contact line exists when 

s = a,, - a,, - 0- > 0 (10.1.10) 

where S is termed the spreading coefficient of the liquid phase a t  the solid-gas 
interface. This can be seen more clearly by rewriting Eq. (10.1.9) in terms of S 
to give 

(10.1.11) 
S 

k = 1 + - =cos 6 
(T 

Evidently if  S > 0 then k > +l. Were S > 0 so that as, > a,, + a, this 
would imply that the solid-gas interface would immediately coat itself with a 
layer of the liquid phase and replace the supposedly higher free energy per unit 
area of direct solid-gas contact, a,,, by the supposedly lower sum of the free 
energies per unit area of solid-liquid and liquid-gas contacts, a,, + a, thereby 
lowering the free energy of the system. However, in thermodynamic equilibrium 
this cannot be realized (Gibbs 1906, Rowlinson & Widom 1982). Therefore, for 
a spreading film in thermodynamic equilibrium k = +l (S = 0), and locally there 
is a state of mechanical equilibrium at the contact line between the three phases. 

In the absence of equilibrium, say, over molecular length scales at the 
interfaces, it is possible to have S > 0, although it is difficult on a macroscopic 
scale to differentiate between whether S = 0 or S > O .  This distinction is 
important since experiment and theory indicate that the larger positive S is, the 
better the spreading over a solid surface is (de Gennes 1985). We discuss the 
case of complete wetting (0 = 0) here since we shall be concerned with it in 
Sections 10.3 and 10.5. 

We conclude this discussion by alerting the reader to the concept of the 
dynamic contact angle (and line), which appears in the literature of flows 
governed by surface tension (Dussan V. 1979). In a flow field where the contact 
line moves, it is necessary to know the contact angle as a boundary condition 
for determining the meniscus shape. If this angle is a function of the speed of the 
contact line relative to the solid surface. then the force balance inherent in 
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10.2 

Young’s equation is no  longer satisfied because, among other things, viscous 
stresses would deform the interface. In fact, the viscous stresses lead to singular 
stresses at  the contact line. The point to recognize is that the contact angle 
concept is a continuum one, and, although quite useful, it does break down near 
the surface. However, the concept of the moving contact line may be applied by 
assuming a fluid continuum with artifices such as relaxing the ‘“no-slip” 
boundary condition to permit a “slip velocity” wherein the velocity jumps 
discontinuously at  the surface, a condition that can remove the singu1a.r nature 
of the stresses. Ultimately, however, the understanding of the contact line 
behavior can only be resolved through an understanding of the physics at  the 
molecular scales, including the deviations from thermodynamic equilibrium (see 
de Gennes 1985). 

Capillarity and Capillary Motion 

Capillarity may be defined as the phenomena resulting from the fact that a free 
liquid surface has a finite or zero contact angle with a solid wall and will attain 
this angle when placed in contact with the wall. It is commonly thought of as 
the rise (or fall) of liquids in small tubes or finely porous media. More generally, 
capillary motion can be said to be any flow that is governed in some measure by 
the forces associated with surface tension. “Ordinary capillarity” is observed in 
a fine tube open at  both ends that is placed vertically in a pool of liquid exposed 
to the atmosphere, with the liquid seen to attain a level in the tube above the 
level of the pool. The actual rise velocity of the free surface of the liquid in the 
tube from the level of the pool is one simple example of “capillary motion.” 

Capillarity and capillary motion are widely seen in nature and are applied 
extensively in a broad range of technical processes. Capillarity h m  been 
observed by anyone who has ever used a blotter. It plays a major role in soil 
hydrology. Coating flows in which thin uniform liquid films are deposited on 
solid surfaces frequently employ the surface tension characteristics of the film. 
This fact is usually not thought of in the common task of painting a wall. 
Surface tension may not be uniform due to adsorbed material, temperature 
gradients, or varying electric charge, and this may give rise to unbalanced forces, 
resulting in fluid motions. A child’s example of this is the small boat with a 
piece of camphor at the back that propels itself on a dish of water. At another 
extreme, surface tension gradients can be used for crystal growth to produce 
semiconductors by imposing large temperature gradients along a molten melt in 
the low-gravity environment of a spacecraft. 

The forces that give rise to the phenomena spoken of appear because of 
the alteration in stresses a t  the interface between two immiscible fluid phases. 
For a curved interface there is a difference in pressure between the two fluids 
given by the Young-Laplace equation. This pressure difference is termed the 
capillary pressure, and since the normal stress component at  the interface must 
be continuous, then that pressure added to the hydrostatic pressure must 
balance. A balance can always be achieved under static conditions. In addition, 
the tangential stress must also be continuous at  the interface. However, if there 
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is a gradient in surface tension in the tangential direction, this leads to an 
additional tangential stress that adds an unbalanced force that will set the fluid 
into motion; that is, the interface cannot be balanced when the fluids are 
stationary. On the other hand, the conditions of continuity of tangential velocity 
and no normal velocity across the immiscible interface are unaltered by surface 
tension. 

The subject of capillarity and capillary motion can perhaps best be 
introduced by using the classical example of the rise of a liquid in a circular 
capillary tube of radius a, that sits vertically in a pool of the liquid open to the 
atmosphere, as shown in Fig. 10.2.1. It is assumed that the surface tension at the 
liquid-air interface is uniform with any possible gradients neglected, leaving the 
discussion of the effects arising from such gradients to Section 10.4. 

If the capillary is circular in cross section, the meniscus will be approxi- 
mately hemispherical with a constant radius of curvature a/(cos O),  where 6' is 
taken to be the static contact angle (Fig. 10.2.1). Departure from hemisphericity 
is associated with the variation in liquid pressure over the surface due to the 
difference in gravitational force over the meniscus height h. A measure of the 
hydrostatic gravitational force to surface tension force is given by the Bond 
number 

gravitational force pgL 
surface tension force (T 

(10.2.1) -- - Bo = 

where L is the characteristic length scale. When the Bond number is large, the 
capillary pressure effect can usually be neglected in a liquid at rest. For the 
meniscus we may identify L with its height h ;  then the criterion for hemis- 

Figure 10.2.1 Liquid rise in an open capillary. 
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phericity can be written 

(10.2.2) 

where A< is termed the capillary length. 
We apply the Young-Laplace equation (10.1.5) to determine the equilib- 

rium height H ,  that the column of liquid will attain, recognizing it is the 
pressure under the meniscus that controls the height. If the pressure variation 
along the interface is neglected, R ,  = R ,  = a/(cos O), and the pressure difference 
across the interface A p  is pa,, - P,,~, with pllq, say, the mean pressure in the 
liquid at  the interface. The hydrostatic pressure at  the pool level is pllq i- pgH,, 
which is approximately equal to p,,,. It follows that the approximate colndition 
for hydrostatic equilibrium is given by 

2 a  COS e 
Pg&= a 

from which the equilibrium column height is 

cosO A 2  
H , = 2 ( L )  - = 2  4 a c o s ~  

Pg a 

(10.2.3) 

(10.2.4) 

Depending on the contact angle, the height can take on any value in the interval 
-2Af la-+2Af/a .  Thus for mercury, where O - 140", the capillary will fall, not 
rise. 

From Eq. (10.2.4) it is evident that for small capillaries H can become 
- 1  :I 

relatively large. For example, for water with (T = 73 mN m in a 0.1-mm- 
radius clean glass capillary the liquid will rise to an equilibrium height of about 
0.15 m. The capillary rise method is one of the most accurate means for the 
measurement of surface tension. 

Following Levich (1962), let us calculate approximately the rate at  which 
the capillary will rise to the height given by Eq. (10.2.4) and the length of time it 
takes to attain that height. The flow in the capillary is unsteady. To simplify the 
calculation, we assume that the velocity profile at  any instant of time is given by 
the Poiseuille profile (Eq. (4.2.14), with ti,,,, = 2 U  and h = a / f i )  

(10.2.5) 

where H r H ,  is the instantaneous distance of the free surface above the pool 
level. This assuniption is evidently not true until a fully developed profile is 
attained, which implies that any solution so derived is valid only for times 
t + a'iv. 

The unbalanced pressure difference at  the interface H I  H,, that is, the 
capillary pressure, is simply 

2u cos 0 
a A p  = ~ - PgH (10.2.6) 
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Eliminating the pressure difference between the above two equations gives the 
following expression for the liquid velocity: 

cr d t  cr 
(10.2.7) 

where alp is a characteristic speed. The parameter pga2/cr is simply the Bond 
number based on the capillary radius. 

A second dimensionless quantity is represented by the left side of Eq. 
(10.2.7). However, this quantity is a variable, not a parameter, since d H l d t  is 
not an imposed velocity. When there is an imposed characteristic velocity, call it 
U ,  then the group represented by the form of the left side is called the capillary 
number. This number measures the ratio of the viscous force to surface tension 
force and is defined by 

- iLLu -- viscous force 
Ca = 

surface tension force cr 
(10.2.8) 

We note in passing that the ratio of the capillary number to the Bond number is 
termed the Stokes number. I t  is a measure of the viscous force to gravity force 
and is defined by 

- iLLu -- viscous force 
N ~ t  = gravitational force pgL2 

(10.2.9) 

We can write Eq. (10.2.7) in a form more suitable for integration, using 
the equilibrium result for H ,  (Eq. 10.2.4) to give 

where the characteristic time to  attain the equilibrium height is 

Upon integrating, we find the actual rise time to be 

1 

(10.2.10) 

(1 0.2.1 1 )  

(10.2.12) 

This relation shows that H -+ H ,  only as t-+ 00, a consequence of the approxi- 
mations made. 

Taking account of the largeness of the log term as HIH,-+ 1, we can 
expand and rewrite Eq. (10.2.12) in the form 

(10.2.13) 
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showing the characteristic time T given by Eq. (10.2.11) to be the llie time to 
reach H,,. That this time is relatively rapid may be seen from the capillary 
example cited in connection with Eq. (10.2.4). For that case, where the 
equilibrium height is about 0.15 m, Eq. (10.2.11) gives T -- 12 s. Except at  the 
beginning of the rise the condition of T 5> a2/v  s) is clearly satisfied. The 
Bond number, which measures the ratio of the gravitational force to surface 
tension force, is approximately 1.3 x lo-’. 

The capillary flow example given is seen to be a one-parameter problem in 
which the parameter is the Bond number (Eq. 10.2.1). An important class of 
technical problems is “coating flows,” in which a uniformly thin liquid film is 
made to cover a substrate. For such flows a characteristic velocity is usually 
imposed on the substrate or  the fluid. As a consequence, the behavior of the 
coating process generally depends on the capillary number and may depend on 
the Stokes number. Because of this distinction from the present example, and 
because of the technical importance of such flows, we shall treat them separately 
in the next section. 

10.3 Coating Flows 

A coating flow is a fluid flow in which a large surface area is covered with one 
or  more thin, uniform liquid layers. A summary of work in this field may be 
found in the review article of Ruschak (1985). In general, though not always, 
the film laid down is subsequently dried or cured. Examples of technical 
importance include the manufacture of synthetic membranes, photographic film, 
and the more prosaic application of painting. 

A fundamental key in coating is to spread the liquid over a relatively large 
substrate by means of viscous forces while maintaining a thin layer of uniform 
thickness at  the substrate by the action of surface tension. Although surface 
tension stresses are quite small compared with the pressure differences associ- 
ated with the spreading of the viscous flow, they are important because they fix 
the amount of fluid laid down. 

The hydrodynamic problem in coating flows is to define the steady 
solution giving the relation between the film-forming geometry, the liquid 
properties, the speed of application of the film, and a desired coating thickness. 
The analysis is complicated by several factors, one of which is that such flows 
are essentially two-dimensional. More importantly, they are free surface-type 
flows, which are basically nonlinear in that the region occupied by the liquid is 
not known initially but is defined by the solution. Moreover, such free surface 
flows must be analyzed to determine if they are stable. 

We take as our first example the well-known procedure of withdrawal 
from a pool of liquid of a surface to be coated. This technique, termed dip 
coating, is, as we shall discuss below, an analogue of a number of other widely 
used coating procedures. Landau & Levich (1942; see also Levich 1962) were 
the first to provide a hydrodynamic analysis of dip coating by considering the 
simplified example of the vertically upward withdrawal of an infinite flat plate 
from a liquid pool (Fig, 10.3.1). They derived a simple approximate relationship 
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Figure 10.3.1 
coating). 

Vertical withdrawal of an infinite flat plate from a liquid pool (dip 

for the film thickness and flow rate at which the liquid is dragged out of the 
bath by the plate in the limit of small values of the ratio of viscous forces to 
surface tension forces (capillary number), where gravity drainage down the plate 
may be neglected. Because of the difficulty of analyzing two-dimensional, 
film-forming flows for arbitrary values of the capillary number, we shall restrict 
our considerations to low capillary numbers both here and in what follows. 

As pointed out by Ruschak (1985), the approximate analysis of Landau & 
Levich rests upon the fact that the final film thickness 6, is small compared with 
the overall length scale of the flow field when the capillary number is small. In 
this case viscous effects are important over the length scale Sf of the Itlbrication- 
film region, where the film adheres to the plate, but they are negligible outside 
this region in the static-meniscus region, where the shape of the meniscus is 
controlled by surface tension and the hydrostatic pressure field (Fig. 10.3.1). 
Because the film is relatively thin, this static meniscus appears to be tangent to 
the moving plate corresponding to complete wetting, that is, zero contact angle. 
Ruschak points out that if the radius of curvature of the static meniscus at its 
apparent point of tangency is R ,  then the overall scale of the flow field can be 
taken as R,  and the assumption is that 6,< R. In the lubrication-film region the 
flow is very nearly rectilinear because of the near-zero contact angle at which 
the meniscus approaches the wall, and viscosity and surface tension act to define 
the film characteristics. 

We first analyze the lubrication-film region and then the matching of this 
region with the static-meniscus region. Although this problem can be more 
elegantly treated by a formal matched asymptotic expansion procedure (Rus- 
chak 1976, Wilson 1982), we shall follow the physically intuitive approach 
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originally set out by Landau 81 Levich, which yields the same analytic solution 
obtainable in the limit Ca+ 0 by more formal means. The basic equation is the 
Navier-Stokes equation; however, numerous simplifications characteristic of 
lubrication theory can be made appropriate to the region of film adherence, 
whence the designation “lubrication-film region.” 

Since we are only interested in the steady-state thickness, any unsteady 
terms can be neglected. The requirement for steadiness will be met so long as 
t 9 RZ/v.  Moreover, the Reynolds number Re = p U R / p  is also supposed suffi- 
ciently small that any inertial terms are negligible; that is, Re << 1. As noted 
above, we consider the case where gravitational effects are also small,, so the 
gravity drainage term pg may be dropped. This requires that the Bond number 
Bo = p g R 2 / u  satisfy the condition Bo < 1. The result of these approximations is 
that the Navier-Stokes equation reduces simply to a balance between the 
pressure gradient and the gradient in shear, as in lubrication theory. 

The appropriate pressure in this case is the capillary pressure given by the 
Young-Laplace equation. This assumes that there is essentially no effect of the 
flow on the interfacial pressure change. One of the principal curvatures of the 
interface is zero; hence 

(10.3.1) 

Here S(x) is the film thickness with x measured vertically upward from the pool 
level; primes denote differentiation with respect to x. Because of the quasi-one- 
dimensional character of the flow in the lubrication-film region, we have taken 
S t 2  << 1. It  follows that the Navier-Stokes equation can be written as a balance 
between viscous and surface tension forces: 

d 3S d 2u 
( T ~ + p ~ = 0  

dx d Y  
(10.3.2) 

where u is the vertical velocity of the fluid in the film and y is measured 
perpendicular to the plate. 

Equation (10.3.2) may be integrated with respect to y at  constant x subject 
to the no-slip condition 

u = U  a t y = O  (1 0.3.3a) 

and the condition that the stress at the free surface of the film is vanishingly 
small: 

du 
p - = O  a t y = S ( x )  

dY 

The parabolic velocity profile so obtained is 

(10.3.3b) 

(10.3.4) 
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The volume flow rate per unit width of plate of “lubricant” is given by the 
quadrature 

(10.3.5) 

showing the characteristic lubrication behavior for 0 as a function of 6. Far 
above the static-meniscus region the film is of constant thickness and parallel to 
the plate (complete wetting), whence 

0 = U6, (10.3.6) 

Eliminating 0 from the last two expressions gives the following ordinary 
nonlinear differential equation for S(x): 

(10.3.7) 

where p U / a  is the capillary number Ca. 

form in terms of the reduced variables 
Examination of Eq. (10.3.7) shows it may be written in dimensionless 

S 3p.u ” 3  
7 7 = -  8, s=&-) 

to give the universal form 

(10.3.8) 

(10.3.9) 

The equation is of third order, so four conditions are required to fix both 
the solution and define the unknown film thickness 6,. One of the requirements 
is that far above the meniscus region (x -+ 03) the film thickness approaches 8, or 

q+1 a s t - j w  (10.3.10) 

N o w  in the neighborhood of 77 = 1, Eq. (10.3.9) reduces to d377/dS3 = 1 - 77, 
and the particular solution there may be written 77 = 1 + Ae-c by ruling out the 
two exponentially growing solutions. This supplies a second condition. A third 
condition comes from the observation that the constant A may be arbitrarily 
chosen because the differential equation (10.3.9) is invariant to a shift in the 
origin of 5, so the constant A may, for example, be set equal to 1. 

The fourth condition must be obtained by somehow smoothly merging the 
solution of Eq. (10.3.9) valid in the lubrication-film region into that for the 
static-meniscus region. Landau & Levich’s intuitive argument was that the 
meniscus curvature must be the same for the lubrication film where it overlaps 
with the static-meniscus layer. This may be stated as an asymptotic equivalence 
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in terms of the reduced variables we have introduced as 

(10.3.11) 

where a is a constant found from the numerical integration of Eq. (10.3.9). This 
overlap region is thus one of constant mean curvature, which implies a 
quadratic behavior in 6.  

The static-meniscus curvature is readily calculated from the free surface 
interface shape for a liquid meeting a plane rigid wall (Fig. 10.3.1). Applying the 
condition of static equilibrium in a constant-density fluid, we get p - pgx = 
constant, and it follows from Eq. (10.3.1) that 

Integrating once gives 

(10.3.12) 

(10.3.13) 

Here, the constant of integration has been set to -1 based on the requirement 
that the liquid far from the pool surface, where x-+ 0, must be horizontal; that 
is, 8 ’ - + - a .  

Following Landau & Levich, the transition to the lubrication regime must 
begin when the liquid film is almost parallel to the plate; that is, when 6 ’ -+ 0 or 
when, according to Eq. (10.3.13), x-+ ( 2 ~ / p g ) ” ~ .  In this limit the curvature is 
given from Eq. (10.3.12) by the asymptotic relation 

(10.3.14) 

where A, is the capillary length (Eq. 10.2.2). In terms of the reduced variables 
defined by Eq. (10.3.8), 

(10.3.15) 

where according to the asymptotic equivalence of Eq. (10.3.1 1) the dimcmsion- 
less curvature is equal to the constant a. 

The constant a is determined by a stepwise numerical integration of Eq. 
(10.3.9) in the direction of decreasing 5, starting from an origin near 77 = 1. This 
has been carried out by several authors, and the result reported, which is slightly 
different from that originally given by Landau & Levich (see Levich 1962), is 
a = 0.643. From Eq. (10.3.15) the limiting thickness of the film adhering to the 
plate is 

6 
= 0.946Ca2’3 

A,  
(10.3.16) 
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Alternatively, with R the meniscus radius of curvature, Eqs. (10.3.1) and 
(10.3.16) give 

(10.3.17) 
6 

= 0.643(3Ca)2/3 

where we have expressed the result in this form for later comparison with that 
from another problem. 

We recall from our introductory physical argument that 6, < R was 
implicitly assumed, from which it follows that Ca 1. A formal asymptotic 
matching (Wilson 1982) shows the solution given by Eqs. (10.3.16) or 
(10.3.17) to be valid strictly only as C a 4 0 ,  although in practice it is only 
necessary that Ca 5 0.01. In this regard note that in the small capillary number 
limit the gravitational field does not affect the lubrication film. The effect of 
gravity enters at about the same capillary number for which the assumption of 
nearly parallel flow in the film region breaks down (Ruschak 1985). Accounting 
for the first-order effect of finite capillary number, Wilson has shown that the 
correction to Eq. (10.3.16) is given by (1  - 0.113Ca1/3 + * e ) .  This correction, 
which is quite small, to the order considered brings in both the effect of gravity 
and the nonparallel nature of the lubrication film. In the opposite limit to the 
one discussed here, when surface tension effects are negligible the capillary 
number is large and the Stokes number is O(1); that is, viscous forces balance 
gravitational forces, and surface tension is unimportant in the liquid adhesion 
process. 

A closely related film-forming procedure to dip coating is roll coating. In 
one embodiment of this method, illustrated in Fig. 10.3.2, two cylinders of 
equal radii with a viscous liquid on one side are counterrotated at the same 

Figure 10.3.2 Roll coating. 
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surface 

0 

U 

speed so as to drag the liquid through the gap between them. The liquid then 
divides and forms a coating film over each roller. The roller surfaces are close 
together with the separation distance at  the “nip” or point of closest ;approach 
small compared with the radii so that the flow there is a nearly parallel 
lubrication-type flow. 

In connection with a study of cavitation in lubrication bearings, Taylor 
(1963) pointed out that the problem he considered, which we observe is like roll 
coating, is analogous to the deposition of a thin film on the inside of a capillary 
tube by blowing a viscous liquid out of the tube with air (Fig. 10.3.3). The 
analogy is readily seen in a reference frame in which the bubble moving into the 
tube with a velocity - U is stationary, with the wall moving to the left at  a speed 
U. The bubble air-liquid interface forms itself into a round meniscus at  its front 
end that travels down the tube until it reaches the end. After the meniscus has 
passed any point, it leaves behind a liquid film that is essentially a t  rest with a 
constant pressure along its length. In the case of small enough Reynolds number 
and a very small capillary radius, gravitational and inertial forces may be 
neglected, and the flow depends only on a balance between viscous and surface 
tension forces. Moreover, as Taylor noted, for any given length of liquid the rate 
of outflow depends essentially on the applied pressure, whereas the aniount of 
fluid left in the tube after the air has reached the end depends essentially on the 
surface tension. 

Taylor (1961) studied experimentally the bubble problem described while, 
at about the same time, Bretherton (1961) analyzed both theoretically and 
experimentally the slow motion in a capillary of a long bubble, where differently 
shaped interfaces at  the front and rear menisci have to be considered. If, 
however, only the front meniscus and the film thickness to a point sufficiently 
far back of the front are examined, then the configuration is essentially the same 
as Taylor’s. In the bubble problem the characteristic length scale is the tube 
radius a, and this length corresponds to the half-nip distance in the roll coater 
problem. Except for the appearance of a natural length scale, all of these 
problems may be recognized to have the same character as the Landau-Levich 

I 

I 
f 6, 
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dip coating problem in the limit of small capillary number, where the surface 
tension force dominates the viscous force. Indeed, Bretherton's analytical de- 
scription concentrated on small capillary numbers and employed an approach 
that closely paralleled the Landau-Levich work of almost 20 years earlier, 
although it was done independently. It is also interesting that some 20 more 
years passed when Wilson (1982), unaware of Taylor's and Bretherton's work, 
showed by matched asymptotic expansions that the low capillary number flow 
problem of a rotating cylinder in a liquid whose top is close to but somewhat 
above the free surface of the liquid is also the analogue of dip coating in the film 
region where the fluid is dragged up. 

In the bubble problem for small capillary number the meniscus in the 
neighborhood of the front end of the bubble will approach a hemispherical 
shape of mean curvature 2 / a  (cf. Eq. 10.1.6), changing to the curvature l / a  (cf. 
Eq. 10.3.1) where the film approaches the constant thickness 6,. Point B in Fig. 
10.3.3 represents the position at  which the hemispherical meniscus region 
starting from the origin overlaps smoothly with the lubrication-film layer, with 
the curvatures of the two regions matched and equal to 2 / a .  Although done 
with greater justification of the approximations made, Bretherton's analysis was 
essentially the same as that of Landau & Levich. He  derived the same governing 
differential equation for the interface shape (Eq. 10.3.9) and found the same 
result for the limiting film thickness 6, as given by Eq. (10.3.17), with R 
replaced by the tube radius a. 

Bretherton did write the expression for the interface shape in the region of 
overlap as 

(10.3.18) 

This relation is seen to be consistent with the approximate curvature 6" + a-' 
being equal to 2/a .  Note that the parabolic shape in x follows from integrating 
the matching condition Eq. (10.3.11), setting the coefficient of the linear term in 
x equal to zero, and determining the coefficient of the constant term from the 
numerical solution of Eq. (10.3.9). Dropping the coefficient of the linear term 
comes from the disposable constant associated with the ability to arbitrarily 
shift the origin of 5, in accordance with our discussion of the conditions to fix 
the solution of Eq. (10.3.9). 

A point made by Bretherton related to his own, Taylor's, and earlier 
experimental observations was that the volume flow rate of liquid swept out by 
the bubble moving with the speed of the air-liquid interface relative to the wall 
must equal the average speed of the liquid in front of it, -V, multiplied by the 
tube cross-sectional area. Applying conservation of mass to a control surface in 
uniform motion with a velocity + U so that the bubble is stationary with respect 
to the surface (Fig. 10.3.3), we get 

(0  + U ) A , , , ,  - (-v + U)Atube = 0 (10.3.19) 

Here, Af,,, is the cross-sectional area of the lubrication film where it attains the 



326 Surface Tension 

uniform thickness Sr, and Atube is the cross-sectional area of the tube whose 
radius is a. It follows that 

(10.3.20) 

with Abubble  the bubble cross-sectional area where the film thickness has the 
limiting value 8,. Denoting the speed by which the bubble exceeds the average 
speed of the liquid in the tube U - V by U W, we may write 

(10.3.21) 

With Sf+a the fractional velocity change to the bubble speed W is given by 

S 
a 

w - 2  f (10.3.22) 

The importance of the fractional velocity change W is that it can be 
estimated directly from experiment by measuring the volume of fluid ejected 
from the tube when the bubble moves a known distance. The measurements can 
then be compared with the theoretical result for the film thickness by using Eq. 
(10.3.22). Experiments by Bretherton did in fact show good agreement with Eq. 
(10.3.17) for capillary numbers in the range However, below 
about Ca - there is an unexplained but systematic divergence from theory. 
Other experimental work concerned with dip coating of vertical plates (White 
& Tallmadge 1965, Spiers et al. 1974) also show good agreement with the 
Landau-Levich result for capillary numbers greater than about and up to 
about when the small capillary number assumption begins to break down. 
Comparison between theory and experiment will be discussed further in the last 
section of this chapter where the effect of nonuniform surface tension is 
examined. 

In this section we have considered the equilibrium configurations for a 
number of thin-film coating flows. It must be emphasized that because these are 
free surface flows subject to interfacial and gravity forces, it is not evident when 
the film deforms due to a disturbance that the interface is stable and will return 
to its equilibrium shape. In roll coating flows, for example, an important type of 
instability that occurs is termed ribbing-line instability in which the flow 
becomes spanwise periodic and the coating becomes ribbed. In this instability 
the lower the capillary number is and the greater the divergence between the 
roller surfaces where the meniscus is located, the more likely the flow will be 
stable. There are a variety of different instabilities that can cause the layer 
thickness of a thin film to become nonuniform, and an understanding of them is 
of considerable importance in any coating process (Ruschak 1985, 1987). 
Closely related to these interfacial instabilities is the phenomenon of interfacial 
wave motion and the conditions under which surface tension dominates in the 
formation, growth, or decay of the waves called capillary waves. We choose not 
to discuss further the instability of thin films. Instead, in the following section, 

< Ca < 
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we illustrate the general problem of interfacial instability and its relation to the 
breakup of a circular liquid jet into drops. 

10.4 Surface Waves and Jet Breakup 

A commonly observed phenomenon seen with a slow-moving cylindrical stream 
of water issuing from a faucet is that at some distance below the faucet the 
stream becomes undulated and then further down breaks up into drops. The 
problem of the breakup of a liquid jet issuing into a gaseous, and also a liquid 
medium, is of considerable practical importance in connection with such diverse 
procedures as microencapsulation, ink jet printing, emulsification, and many 
other problems of practical importance. 

In 1879 Rayleigh (see Rayleigh 1894) was the first to demonstrate by a 
hydrodynamic stability analysis that a liquid jet is unstable to small perturba- 
tions and breaks up into segments that, under the action of surface tension, 
form into individual drops. The disturbance that gives rise to the instability may 
be random or forced. The current procedure of choice for the production of a 
uniformly sized droplet stream with uniform droplet spacing is forced longi- 
tudinal vibrations in the direction of the jet flow. 

To better appreciate the nature of jet instability and jet breakup, we first 
consider the closely related phenomenon of horizontally propagating sinusoidal 
waves on the free surface of a “deep” liquid, say, water. When the waves are 
driven by a balance between the fluid’s inertia and the restoring force of gravity, 
they are termed surface gravity waves. If instead of gravity the restoring force to 
bring the surface flat is surface tension, the waves are referred to as capillary 
waves or ripples. Both of these wave types are confined to a distance of about a 
wavelength from the surface. Although the wave amplitudes may be small, such 
waves are dispersive; that is, the speed of the wave varies with the wavelength. 

Below, we examine the propagation of unchanging small disturbances on a 
liquid surface and then investigate the conditions under which they remain 
unchanged, become attenuated, or grow exponentially in time so as to give rise 
to unstable motions. It is this latter condition that is of interest in connection 
with jet breakup. 

Consider a small-amplitude sinusoidal plane wave of length A and am- 
plitude a propagating along an air-water interface in the positive x direction 
with wave speed c, as sketched in Fig. 10.4.1. The water is taken to be 
incompressible with viscosity and other dissipative effects neglected so that the 
wave amplitude at the interface remains unchanged. The vertical displacement 
of the disturbed surface, f ;  may be written 

z = l ( x ,  t )  = a sin(wt - k x )  (10.4.1) 

where the wave number k and radian frequency w are defined in terms of the 
period T and wavelength A by 

(10.4.2a) 
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Figure 10.4.1 Sinusoidal wave propagating on surface of air-water interface. 

(10.4.2b) 

with 

h = cr (10.4.2~) 

Although there is no damping or  growth of the wave, it is dispersive, so 
the frequency depends on wave number. To determine the dispersion relation, 
we simplify the momentum equation for a wave whose disturbance amplitude is 
small compared with the wavelength. Because of the small amplitude, terms 
involving squares and products may be neglected and the linearized inviscid, 
constant-density form becomes (Lighthill 1978) 

du 

d t  
p - = -vp, (10.4.3) 

where u is the disturbance velocity and p ,  is the excess pressure over the 
undisturbed value due to the disturbance. The variation of the excess pressure 
over any cross section (specified by its x coordinate) may be neglected. This 
derives from the condition that for longitudinal waves the longitudinal gradients 
of p ,  can be large compared with those resulting from transverse gradients only 
if the variation of p ,  is negligible across each cross section. With the restoring 
force of gravity and surface tension taken into account, the excess pressure a t  
any point is given by the sum of the capillary pressure due to the wave curvature 
and the hydrostatic pressure due to gravity. 

The undisturbed hydrostatic pressure distribution, with z measured up- 
ward from the undisturbed free surface, is 

P o  = P a  - Pgz (10.4.4) 

where p a  is the atmospheric pressure. The pressure at  any point in the disturbed 
liquid is 
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P = P o  + ( P J K  (10.4.5) 

with ( p e ) g  the excess pressure from gravity due to the disturbance. Since p = p a  
at the free surface z = 5, it follows that 

( P J g  = P85 (10.4.6) 

As noted, there is also an excess pressure from surface tension that is 
associated with the interface curvature. From the Young-Laplace equation for 
the plane case considered, this excess pressure is ( = g l R ,  where R is the 
local radius of curvature of the wave. For small displacements R-l  = - d 2 1 / d x 2  
(Eq. 10.3.1), from which 

(10.4.7) 

For the sinusoidal wave described by Eq. (10.4.1), d 2 [ / d x 2  = - k 2 [ ,  so 

( P e ) , ,  = 0-k2f  (10.4.8) 

The total excess pressure, equal to the sum of the capillary and hydrostatic 
pressures, is 

or 

P ,  = Pgeffl 

(10.4.9) 

(10.4.10) 

In the case of sinusoidal waves, surface tension is thus seen to manifest itself 
simply as an increase in g by an amount k 2 a / p  to a new effective value geff. 

From the above arguments it may be seen that the waves will become pure 
capillary waves with surface tension forces dominant when 

(10.4.1 1 ) 

On the other hand, the waves will be pure gravity waves with gravitational 
forces dominant when 

(10.4.12) 

The capillary length A, = ( a / p g ) ’ / 2  is the characteristic length scale governing 
the change from one regime to the other. For water with (T = 73 mN m-’ and 
p = 1000 kgm-3 the wavelength 2 ~ r ( a l p g ) ” ~  equals 1.7 x lo-’ m. This shows 
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capillary waves to be short-wavelength, high-frequency waves, whereas gravity 
waves are long wavelength. 

In addition to the momentum equation, it is also necessary to satisfy the 
equation of continuity, which for the incompressible fluid considered is V * u  = 0. 
The disturbance velocity is also irrotational; hence, in addition, V x u = 0 
(Lighthill 1978). Therefore the disturbance velocity field is derivable from a 
gradient of a velocity potential; that is, u =V+ with the potential satisfying 
Laplace’s equation V2+ = 0. This may seem surprising at  first, but Laplace’s 
equation can describe a wave motion when boundary conditions are satisfied at 
a free surface. 

The excess pressure field associated with the velocity field is given from the 
integral of the momentum equation (Eq. 10.4.3) by 

d 4  
P ,  = - P  (10.4.13) 

which may be recognized as the unsteady Bernoulli equation. From Eq. 
(10.4.10) the dynamic boundary condition for the free surface is then 

(10.4.14) 

Note that consistent with the linearization of the flow equations, d4 i ’ J t  is 
evaluated at  the undisturbed free surface, the difference between the values of 
the derivatives at z = 5 and z = 0 being of higher order. 

A second boundary condition is provided by the kinematic requirement 
that each particle on the surface remain there. With w the vertical velocity 
component this can be expressed through 

- _  0 5  - w  a t z = {  
Dt 

(10,,4.15) 

Linearizing, we can neglect the convection term u .Vl in D l / D t  and the normal 
velocity d 4 l d z  at z = 5 can be evaluated at z = 0, whence 

(10.4.16) 

The velocity potential 4 satisfies the Laplace equation and the free surface 
boundary condition on is obtained by differentiating Eq. (10.4.14) with 
respect to t and eliminating a l l a t  from Eq. (10.4.16). For waves on deep water 
the second boundary condition on the potential is supplied by the requirement 
that there are no disturbances deep in the water, or that 4 = constant as 

A sinusoidal wave solution of Laplace’s equation satisfying both the free 
z-+--oO* 

surface condition and the deep water condition is 

4 = A P  C O S ( W ~  - k x )  (10.4.17) 
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with A a constant. The solution shows the disturbance to die off exponentially 
with distance down from the surface, with the l l e  “decay depth” equal to 
h/27r. The solution given for $J satisfies both the conditions of Eq. (10.4.14) and 
Eq. (10.4.16), as well as the postulated sinusoidal free surface shape of Eq. 
(10.4.1), provided 

(10.4.18) 2 * = k&,f 

We note here that although the free surface shape was set down at the outset, it 
could have been found directly by solving for the velocity potential $J as outlined 
and then determining [, say, from Eq. (10.4.14). 

Equation (10.4.18) is the sought after dispersion relation for surface waves 
on deep water. I t  may also be written as a dependence of wave speed on 
wavelength: 

(10.4.19) 

The wave speed is readily shown to have a minimum value as a function of 
wavelength, which is expressible in the form 

where the wavelength corresponding to the minimum 

The wavelength hlnin is seen from Eqs. (10.4.11) and ( 
associated with the transition from the dominance of capillary waves to gravity 
waves, or vice versa. For water, as noted earlier, hmi, = 1.7 x lo-‘ m to which 
the corresponding minimum wave speed is 0.23 m s-’. 

With gravity neglected, the surface tension is related to the wave speed by 

(10.4.20) 

wave speed is 

(10.4.21) 

0.4.12) to be that length 

c2ph 
g = - - - -  

27r 
(10.4.22) 

This expression for capillary waves has been used as the basis for the measure- 
ment of surface tension by measuring the propagation velocity of capillary 
waves generated at a predetermined frequency (see Levich 1962 and, for a more 
recent approach using laser light scattering, Hi rd  et al. 1976). 

In the absence of dissipation and with uniform surface tension, plane 
small-amplitude capillary waves will propagate undamped and unamplified. 
Viscosity and surface tension gradients lead to the damping of capillary waves. 
In the following section we shall discuss the damping due to the presence of 
surface-active substances, which because of the wave shape are not uniformly 
distributed, giving rise to a spatially nonuniform surface tension. Of interest in 
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connection with our introductory remarks on the breakup of a liquid jet are the 
conditions under which small-amplitude capillary disturbances on the surface of 
a cylindrical jet will amplify and lead to jet breakup. 

The physical reason why a slow-moving liquid jet breaks up into drops at 
some distance below the nozzle lies in the interaction between small-ampli tude 
disturbances on the jet and surface tension, with subsequent high-gain amplifica- 
tion of the capillary perturbation. The initial disturbances may be a result of 
random excitations, such as jet friction or nozzle roughness, or they maly be 
impressed on the jet. 

If a cylindrical jet is disturbed into an undulating or “varicose” shape, it 
will, under the action of surface tension, tend to minimize its surface arlea to 
drive the free energy to a minimum and thus release surface energy. Thiat an 
axisymmetric deformation can decrease the surface area of a jet is simply 
illustrated by considering the limiting situation of the jet breaking up into 
spherical drops as a result of the bulbous portions of the jet surface expainding 
further and the constricted regions becoming narrower, thereby forming a neck 
that thins and eventually breaks (Fig. 10.4.2A). A simple geometrical calculation 
will show that if the jet is considered to be a fixed cylindrical volume, its surface 
area can be reduced if  it breaks up into spherical drops of radius greater than 
1.5 times the cylinder radius. With n equal to the number of drops into which 
the jet breaks up, and yt 2 2, the uniform spacing between the droplets would be 
greater than 3 n / ( n  - 1) times the drop radius, where n / ( n  - 1) will lie between 
2 and 1. It is precisely because an instability on a round jet can decrease the 
surface area that breakup occurs; the decreased surface area gives rise to a 
release of free energy. I t  may be recognized that this area reduction is a 
consequence of the axial symmetry and is not characteristic of plane flow. 

There are a number of modes of jet breakup, but we consider only the 
breakup into spherical drops caused by capillary forces, which implies low jet 
velocities into an external medium whose density is low by comparison with the 
jet, say, air. At high velocities the dynamic effect of the surrounding medium on 
the jet surface will alter the surface pressure, and tangential stresses a t  the 
surface due to viscosity may also affect the breakup. It is a well-known 
observation that at  sufficiently high velocities a jet will “atomize” into a large 
number of small droplets compared with a relatively smaller number of big 
drops a t  low velocities. 

Even if the jet velocity is low enough that just capillary forces need be 
accounted for, the hydrodynamic stability problem is relatively simple when 
only the jet stability to small disturbances is considered, that is, disturbances 
whose amplitudes are small compared with the jet radius. When this is not the 
case, nonlinear mechanisms enter, which are manifest in various phenomena, 
including the formation of satellite droplets, which are small spherules that form 
between the drops (Fig. 10.4.2B). For literature on these and other no In 1’ inear 
effects of jet instability, see Bogy (1979). 

The problem of the linear stability of an infinitely long, initially stationary, 
circular, inviscid, incompressible liquid jet in air was first analyzed in 1879 in a 
classic paper by Rayleigh (see Rayleigh 1894). This paper and his other studies 
on jet instability remain a pleasure to read for their clarity and insight despite 
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Figure 10.4.2 Photographs of liquid jet breakup in air: (A) into spherical drops. 
[Courtesy of Prof. Richard K. Chang. From Qian, S-X. et al. 1986. Lasing droplets: 
Highlighting the liquid-air interface by laser emission. Science 231, 486-488. Copyright 
1986 by the AAAS. With permission.] (B)  into spherical drops with satellite droplets. 
[Courtesy of Prof. M.C. Yuen. From Goedde, E.F. & Yuen, M.C. 1970. Experiments on 
liquid jet instability. J. Fluid Mech. 40, 495-511. Cambridge University Press. With 
permission.] 

numerous subsequent works on the subject by other authors and the passage of 
well over a century. 

All linear hydrodynamic stability analyses of steady laminar flows can be 
recognized to have essentially four fundamental steps (Lin 1955, Drazin & Reid 
1981). The first is the specification of the basic flow through the knowledge of 
the velocity and other fields such as pressure and temperature at each point in 
the field. Next the basic flow is assumed to be slightly disturbed, and the 
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equations and boundary conditions for the disturbed field quantities are ob- 
tained by linearization. This leads to a linear homogeneous system of partial 
differential equations, the coefficients of which may vary spatially but not in 
time. 

In the third step, an elementary solution of the system in appropriate 
mathematical form is chosen for the initial disturbance. Typically the complex 
form of the Fourier representation of periodic functions, although the more 
cumbersome form of an expansion in a series of sine and cosine terms may 
equally well be used. For example, the elementary solution might be chosen to 
be the normal  m o d e  

+(x, z,  t )  = @(z)  e r ( w t - k x )  (10.4.23) 

where, in general, CD and w are complex with k real. Here, the real part of + 
represents a one-dimensional wave traveling in the x direction that may grow, 
decay, or remain unchanged in time (cf. Eq. 10.4.17). With w = w, + iw, for 
w, < 0, the disturbance will be unstable and grow with time, and for w, :> 0 the 
wave will be stable and decay with time, and for w, = 0 the wave will be 
neutrally stable. I t  is generally convenient to represent an arbitrary initial 
disturbance as a superposition of normal modes, each of which may be treated 
separately since each satisfies a linear equation. The analysis then involves 
finding a complete set of normal modes to represent the disturbance. 

The fourth and final step in the stability analysis is the reduction of the 
linear system of partial differential equations to a system of ordinary linear 
differential equations, the solution of which, subject to the appropriate bound- 
ary conditions, yields the “eigenfunction” @(z)  and the associated complex 
wave velocity c. 

Much of the procedure for the analysis of jet stability has already been set 
down in connection with the discussion of undamped surface waves on deep 
water. A fundamental difference in the jet problem from plane deep water waves 
is that it is axisymmetric with an imposed characteristic length scale equal to the 
jet radius a. Since the undisturbed jet is considered to be inviscid and in uniform 
flow, it can be reduced to a state of rest simply by a Galilean transformation. 
With gravity neglected and only surface tension forces acting, the pressure at  
any point within the jet is p ,  + o /a .  This then describes the basic flow needed 
for the first step of the stability analysis. 

The second step is the linearization of the governing flow equations and 
boundary conditions assuming the flow to be only slightly disturbed. The 
momentum equation so linearized is given by Eq. (10.4.3), with p ,  the excess or 
“disturbance” pressure and u the disturbance velocity. The continuity equation 
for the disturbance velocity is as before, V2+ = 0. The natural coordinates for 
the problem are the cylindrical coordinates ( Y ,  0, z )  in which Laplace’s equation 
takes the form 

(10.4.24) 
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where the radial displacement of the disturbed jet surface 5 may be expressed 
functionally as 

The linearized dynamic boundary condition is physically the same as given 
by Eq. (10.4.7) for the plane surface wave, which with allowance for the 
cylindrical symmetry of the jet problem may, from the Young-Laplace equation, 
be written 

( 10.4.26) 

Similarly, from Eq. (10.4.16), the kinematic boundary condition that each 
particle remain on the surface is 

$=($) r = a  (10.4.27) 

The linearized partial differential equations for the flow and the boundary 
conditions having been defined, we next specify the form of the disturbance. We 
avoid generality and take the disturbance potential 4 to be represented by the 
typical wave component 

+(Y, 0, Z, t )  = @ ( Y )  ept cos(kz + ne)  (10.4.28) 

where k is the real axial wave number and n is an integer. The amplification 
factor p may be positive real or imaginary, the latter case corresponding to an 
unchanging wave component and the former to amplification. Note that Eq. 
(10.4.28) cannot satisfy viscous boundary conditions, and, in the absence of 
viscosity or other dissipative mechanism, there can be no damping. With real p 
restricted to positive values, the potential represents both a longitudinal and 
azimuthal perturbation that may remain unchanged or grow exponentially in 
time. 

In the fourth and last step, by substituting the wave form Eq. (10.4.28) 
into Laplace’s equation and separating variables, one arrives at Bessel’s modified 
differential equation of order N for @(Y): 

- + - - -  
dy2 Y dr 
d2@ 1 d@ 

(10.4.29) 

The general solution for @ is AZ,(kv) + BK, (kr ) ,  where A and B are arbitrary 
constants, and I, and K ,  are the modified Bessel functions of the first and second 
kind. Since K ,  + w as r 9 0, we have, on requiring 4 be bounded, 

Q, = AZ,(kr) (10.4.30) 
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The determination of the equation for the free surface shape and the 
“eigenvalue” relation between the amplification factor P, the wave number k ,  
and the integer n is carried out just as in the evaluation of the dispersion relation 
for plane waves. In particular, from the kinematic boundary condition Eq. 
(10.4.27) and the solution for the disturbance potential 4 given by Eqs. 
(10.4.28) and (10.4.30), we can immediately obtain the expression for the 
radial displacement of the disturbed surface as 

A k l ;  (ka )  t =  e P t  cos(kz + no) (10.4.31) 

The excess pressure p ,  is then found from the dynamic boundary condition Eq. 
(10.4.26). Using the unsteady Bernoulli equation p ,  + d 4 i d t  = 0, we can elimi- 
nate the unknown constant A to give the eigenvalue relation 

(10.4.32a) 

where 

a = ak (10.4.32b) 

The linear stability characteristics of the jet are specified by Eq. (1O.4.32), 
where we note that P z  - a/pa3,  which may be compared with the plane 
capillary wave result where w 2  - alph’. This behavior is not surprising and can 
be deduced from dimensional arguments. Indeed, for the jet when a 9 1, that is, 
when the wavelengths are small compared with the jet radius, we have from the 
properties of the Bessel function that IL(a) / I n ( a )  = 1. With p = io, Eq. 
(10.4.32) reduces to the dispersion relation o2 = k3cr/p for stable, sustained 
surface capillary waves on deep water (Eq. 10.4.19). 

Of greater interest here are the general conditions where Pz > 0, leading to 
an instability. Since aIL(a)/I,,(a) is positive for all nonzero real a, it follows 
from Eq. (10.4.32) that P z  < 0 for all a if n # 0 or for a 2 3 or  a 5 - 1 i f  n = 0. 
Under these conditions P is an imaginary number, and as with surface capillary 
waves on deep water the oscillations sustain themselves without growth or 
decay. The case n # 0 corresponds to nonaxisymmetric disturbances, and n = 0 
to axisymmetric disturbances, so we may conclude that if the disturbances are 
nonaxisymmetric the jet is always stable. On the other hand, P ’ > O  for 
- 1 < a < 1 if n = 0. Since a = ak,  this says the jet is unstable to axisyrnmetric 
disturbances whose wavelength A = 2 r / k  is greater than the undisturbed jet 
circumference 27ra. 

The wave number of the fastest-growing disturbance can be obtained by 
differentiating Eq. (10.4.32) with respect to a for n = 0 and setting the result to 
zero. This calculation was made by Rayleigh, and he found the amplification 
factor to have a maximum value as a function of a given by 

112 

P”,,, = 0.343( 4) p a  (10.4.33) 
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The wavelength corresponding to the maximum amplification factor occurs for 
(Y = 0.697 or 

A,,, = 9 . 0 2 ~  (10.4.34) 

Rayleigh then postulated that this fastest-growing mode would dominate the 
instability and lead to the jet breakup. Drazin and Reid (1981) note this may 
not necessarily be correct because all disturbances might not have the same 
initial amplitude and because nonlinear effects may be important, though they 
do observe that it is a “good working rule.” 

Although these results apply to the instability of a stationary jet, they can 
be used to estimate the length at which a circular jet of uniform initial velocity 
U, will break up. We estimate the breakup length as 

L ,  = U,t,  (10.4.35) 

where t ,  is the time for the fastest-growing mode to increase from its initial 
value to a value on the order of the jet circumference. The maximum dimension- 
less logarithmic growth rate &,,( p ~ ~ / a ) ” ~  will amplify the initial disturbance 
amplitude by the factor e in a time given by PmaxtB = 1 or 

t ,  =2.92 (p;3)“2 __ 

or to 100 times its initial amplitude ( Pmaxt, = 4.61) in a time 

3 l t 2  

t ,  = 13.4( 5) 

(10.4.36a) 

(10.4.36b) 

For a 5-mm-diameter water jet the characteristic capillary time ( pa3/a)”’ is 
4.14 x s, so we may expect such a slow-moving jet to break up very 
quickly, in distances on the order of a centimeter for speeds approximately 
0.1 m s-’, The jet breakup length is predicted remarkably well by Rayleigh’s 
linear result over a wide range of disturbance amplitudes even though the 
breakup process may be strongly nonlinear. 

If the interval between drops is A,,,, and the spherical drops that form at 
this spacing have a diameter d and the same volume as a cylinder of length A,,, 
with a radius a equal to that of the jet, then 

(10.4.37) 

Inserting the value of A,,, from Eq. (10.4.34), we find 

d = 3 . 7 8 ~  (10.4.38) 

Our earlier, simple, nonflow, geometrical argument showed that the surface area 
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of a jet can be reduced if it breaks up into spherical drops with d > 3 a ,  a 
remarkably close bound to the result given by Eq. (10.4.38). From Eqs. 
(10.4.34) and (10.4.38) it is readily shown that 

A,,,, = 2.38d (10.4.39) 

Our nonflow geometrical calculation showed that A > 3d  for the cylinder 
breaking into two equally spaced spherical drops with d > 3a, again a surpris- 
ingly close bound. We recall that these bounds were derived from the argument 
that a decrease in the jet surface area would tend to drive the free energy to a 
minimum and thereby release surface energy. 

Examination of Fig. 10.4.2A shows that in the breakup of the jet before 
the drops become spherical they undergo an oscillation about a spherical !shape. 
This oscillation is associated with capillary waves on the drop surface and from 
dimensional considerations the characteristic oscillation frequency must be 
( ~ l p d ~ ) ' ' ~ ,  with d the drop diameter. Rayleigh (1894) (see also Levich 1962) 
showed this estimate to be exactly the minimum natural oscillation frequency 
from which the length to form the uniformly spaced spherical drops can be 
estimated. 

We conclude this section with reference to Fig. 10.4.2B, where it can be 
seen that smaller satellite drops are interspersed between the main drops. These 
drops form when the ligaments separate from the main drops at  both ends. In 
many practical applications of drop formation, including drug microencapsula- 
tion and ink jet printing, uniform drop sizes are required and satellite drops are 
an impediment. Analytical study of satellite drop formation requires both 
temporal and spatial nonlinear analyses. Such treatments will not be considered 
here because they are beyond the scope of the text, but for further information 
see Bogy (1979).  

10.5 Flows Driven by Surface Tension Gradients 

Spatial variations in surface tension at a liquid-gas interface result in added 
tangential stresses at the interface and hence a surface tractive force that acts on 
the adjoining fluid, giving rise to fluid motions in the underlying bulk liquid. 
This force is in addition to any arising from viscous tangential stresses a t  the 
interface and can lead to interfacial dissipation within a surface boundary layer 
that can exceed the dissipation in the bulk of the fluid. The motion induced by 
tangential gradients of surface tension is usually termed the Marangoni effect, 
after C. Marangoni whose initial work on the subject appeared in 1871. Drazin 
& Reid (1981) have pointed out, however, that the phenomenon was actually 
first described by James Thomson, the elder brother of Lord Kelvin, in 1882. 

Gradients in surface tension can also lead to an instability, with sub- 
sequent cellular-type flows. These unstable flows are similar in character to the 
unstable convection that results when a density gradient is parallel to, but 
opposite, a body force, such as gravity. In this case the fluid is in unstable 
equilibrium with the heavier fluid on top of the lighter fluid. When a. critical 
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density gradient is exceeded, the flow will assume a steady cellular or vortex roll 
configuration (Ostrach 1980). We shall discuss this surface tension induced 
instability in the following section. 

Spatial gradients in surface tension may arise from a variety of causes, 
including spatial variations at  the interface in temperature (Eq. 10.1.3), in 
surface concentrations of an impurity or additive (Eq. 10.1.4), or in electric 
charge or surface potential. The resulting flows are termed, respectively, ther- 
mocapillary flows, diffusocapillary flows, and electrocapillary flows. We shall 
limit our discussion of electrocapillary phenomena because of space restrictions 
but instead refer the reader to Levich (1962) and Newman (1991). 

Many examples of stable flows driven by tangential stresses derived from 
surface tension gradients are commonplace: the camphor ball that will “dance” 
on a water surface, the ripples that form on the skinned surface of chocolate 
pudding near the cup center, and the calming effect of “oil on troubled waters,” 
as phrased in Plutarch’s question “Why does pouring oil on the sea make it clear 
and calm?” We shall attempt to answer this question in part by showing how 
insoluble surface-active substances can lead to strong damping of plane capillary 
waves on deep water. Following Herbolzheimer (1988), we shall also show how 
surfactants can strongly modify the pressure drop required to push through a 
bubble in a fine capillary at  a given speed, a problem examined for constant 
surface tension in Section 10.3 in relation to coating flows. This particular 
problem is of considerable practical importance in connection with the displace- 
ment of oil from a porous strata by the technique of foam flooding. Surface 
tension driven flows arise in many other technically important fields, including 
metals processing (Szekely 1979) and crystal growth (Ostrach 1983, Langlois 
1985). Finally, as an indication of the diversity of phenomena resulting from 
flows driven by surface tension gradients, we note the biological model of cell 
cleavage (cytokinesis) proposed by Greenspan (1977) in which the cell splitting 
results from a difference in the equatorial and polar surface tensions that 
produces an unstable contraction of the spherical surface toward the equator. 

Clearly, then, we must know the concentration, temperature, and charge 
distributions at  the interface in order to define the surface tension variation 
required to solve the hydrodynamic problem. However, these distributions are 
themselves coupled to the equations of conservation of mass, energy, and charge 
through the appropriate interfacial boundary conditions. The boundary con- 
ditions are obtained from the requirement that the forces at  the interface must 
balance. This implies that the tangential shear stress must be continuous across 
the interface, and the net normal force component must balance the interfacial 
pressure difference due to surface tension. 

If the surface tension varies along the interface, a tangential force per unit 
area will exist on the interface, given by 

f, = v , m  (10.5.1) 

where V, denotes the surface gradient and f, is the force component in the 
surface. The positive sign on V,cr indicates that the liquid tends to move in a 
direction from lower to higher surface tension. 
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Let us denote the force per unit area exerted on the interface from the 
viscous stresses and pressures associated with the boundary fluids as f" and fP. 

The superscripts a and p refer to the two different fluids on each side of the 
interface. With n the unit normal vector into the fluid p, the forces may be 
written (Newman 1991, Edwards et al. 1991) 

fa = n.Sa +np" (10.5.2a) 

We now can make a tangential and normal force balance. In the tangential 
direction on the interface the forces f" and f P  are purely viscous, and from Eqs. 
(10.5.1) and (10.5.2) we have 

f,* + fj + V,a  = 0 (10.5.3) 

Thus the shear stress depends on the local surface tension gradient, in the 
absence of which Eq. (10.5.3) simply reduces to the usual fluid dynamic 
boundary condition that the tangential viscous stress is continuous at  the 
interface of two different fluids. The normal force balance simply gives the 
scalar equation 

(10.5.4) 

where we have used the Young-Laplace equation (10.1.5). The normal forces f, 
include both the thermodynamic pressures as well as the normal viscous stresses. 

I t  is perhaps clearer now from Eqs. (10.5.3) and (10.5.4) that if the 
surface tension terms are not small compared with the shear terms that the 
velocity distribution will be affected in each of the phases. However, a depends 
on the concentration, temperature, and charge a t  the interface, the determi- 
nation of which is coupled to the solution of the appropriate equation of 
change. Therein lies the difficulty in solving this type of problem. 

To illustrate a particularly simple example of how a surface tension 
gradient can give rise to a bulk fluid motion, we consider the thermocapillary 
motion generated in an open rectangular shallow pan with a very thin liquid 
layer at  the bottom (Fig. 10.5.1). The variation of surface tension is brought 
about by maintaining one of the side walls at  a higher constant temperature 
than the other side wall, which is at  a different constant temperature. The 
difference in side wall temperatures results in a temperature gradient along the 
surface and a corresponding surface temperature gradient. We recall, as shown 
in Fig. 10.5. I ,  that for liquids &rldT < 0. 

The pan is considered to be much deeper (into the paper) than the liquid 
height in the pan, h. Moreover, the pan itself is much longer than it is wide, SO 

lib + 1, where 1 is the pan length. Under these conditions, any flow nonunifor- 
mities at the side walls are small and the flow is essentially two-dimensional. 
Since h G I ,  the flow is nearly lateral, but, as we shall show, the liquid height 
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Figure 10.5.1 Thermocapillary motion in a shallow pan. 

does vary along the length, so there is a small but finite vertical flow. However, 
except a t  the side walls, which are far removed from the bulk flow, the vertical 
velocity component is very much smaller than the horizontal component and 
any effects of the free surface curvature may be neglected. 

The essentials of this problem were first suggested by Levich (1962), 
although his solution contained some simplifying assumptions, one of which we 
shall retain, and some inconsistencies pointed out by Yih (1968), who gave a 
more general solution. This work was later generalized further to unsteady flows 
by Pimputkar & Ostrach (1980). 

In his analysis Levich assumed the liquid layer was thin enough that 
inertial effects were negligible, implying that the appropriate Reynolds number 
was sufficiently small. In light of the “shallow water” theory approximation 
made, we may choose for the characteristic length the initial liquid film height 
h,. There is no specified characteristic velocity, and we take it to be the 
maximum lateral velocity at  the interface, u,,,, due to the driving force dcrldx. 
We emphasize, however, that this quantity is not given but is defined by the 
solution. In order of magnitude, u,,,, is specified by the balance between the 
shear force a t  the interface and the tractive force due to the surface tension 
gradient, whence 

(10.5.5) 

The criterion for the smallness of the Reynolds number Re, = ~ , , , h , / u  can 
therefore be written 

(10.5.6) 
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For steady two-dimensional incompressible flow, with the liquid viscosity 
constant, the inertial terms neglected, and with the lateral velocity gradients 
small compared with the vertical gradients, the momentum equation in the x 
direction reduces to the Couette form 

(10.5.7) 

With surface curvature effects neglected but the gravitational force considered, 
the z momentum equation reduces to the hydrostatic form 

(10.5.8) 

with z measured upward from the pan bottom. In Levich’s original analysis 
d p l d z  was taken equal to zero. 

T o  complete the system of equations, we employ the integral form of the 
continuity equation, recognizing that the liquid surface layer set in motion by 
the surface tension force (Eq. 10.5.1) must be accompanied by a motion of the 
fluid in the opposite direction below the surface, as sketched in Fig. 10.5.1. With 
no net flux across any cross section, the continuity equation for the fully 
developed flow is 

job(x’ u(z )  dz = 0 (10.5.9) 

Yih pointed out that this is a special case and that, depending on the geometry 
of the end conditions, the net flux need not be zero, but we retain this 
assumption as appropriate to the particular physical problem considered. 

Next, the boundary conditions must be specified, and at the pan surface it 
is simply the no-slip condition 

u = O  a t z = 0  (10.5.10) 

At the interface, with curvature neglected, the tangential stress is continuous, so 
from Eq. (10.5.3) 

du d a  
P-=- d z  dx 

at z = h ( x )  (10.5.11) 

there being no normal gradients and the air viscosity being negligibly small 
compared with that of the liquid. The last boundary condition is supplied by 
continuity of pressure at  the surface 

p = p ,  a t  z = h ( x )  (10.5.12) 

where P , ~  is the atmospheric pressure. 

(10.5.10) and (10.5.11) to obtain for the velocity profile 
Levich integrated Eq. (10.5.7) and applied the boundary conditions 
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~ u = ( ~ - ~ ~ ) z + ~ ~ z  d u  d p  1 d p  
(10.5.13) 

Levich did not, however, specify the means for evaluating d p l d x .  This may have 
resulted from his assumption that h was constant. However, as Yih noted, from 
integrating the z momentum equation, the pressure is given by the local 
hydrostatic condition 

P = e,, + pg(h - Z )  (10.5.14) 

This specifies the relation between the pressure gradient and variation of free 
surface height in the x direction as 

(10.5.15) 

We can now use the continuity relation (Eq. 10.5.9) together with the 
above equation to obtain the variation in surface tension gradient with the 
gradient in free surface height: 

do 2 dh 
dx - 3 pgh dx _ -  

This can be immediately integrated to give 

(7- 

(10.5.16) 

(10.5.17) 

where the constant of integration has been determined by the requirement that 
u = u1 and h = h ,  at x = 0. Note that since we have taken the net flux across 
any cross section equal to zero, there is no freedom in specifying h,  at x = 1 if cr2 
is given. Both a2 and h, could be specified at x = 1, but then it would not be 
possible to specify h ,  at x = 0 with u1 given. The important point to be seen in 
Eq. (10.5.17) is that a variation in u automatically requires a corresponding 
variation in h. The parameter measuring the relative change in h2 for a given 
change in u is the Bond number pgh;/u,. 

From the solution for the velocity profile (Eq. 10.5.13) and the relation 
between daldx and dpldx,  we have 

z 3 2  du  
u =  - (- - -1) -& 

2p 2 h 
(10.5.18) 

As sketched in Fig. 10.5.1, the liquid velocity has a maximum value at  the 
interface in the direction of positive x given by 

h da 
urnax = - - 

4p dx 
(10.5.19) 

which is in accord with our earlier order-of-magnitude estimate. The velocity 
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reverses direction at  y = 2h l3 ,  attaining a maximum negative value at y = h l 3 ,  
and then decreasing monotonically to the pan bottom. 

The requirement that the Reynolds number Re, = h,u,,,/v be small 
compared with unity may be expressed as 

0 . 4 ~ ~ ’  
daldx 

h: i ___ (10..5.20) 

where we have interpreted “small compared with unity” as less than or equal to 
0.1. As discussed in Section 10.1, the variation of a with temperature for liquids 
is close to linear. For water d o l d T -  -0.15 m N  m-’K-’; thus with a tempera- 
ture gradient dTldx = -100 K m - ’  this would give a value of d a l  
dx = 15 m N  K2. With v = m 2  s-’, p = l o 3  k g d ,  and h: defined by the 
equality in Eq. (10.5.20), the Bond number is 3.6 x for vl = 73 m N m - ’  
(the surface tension of water at  20°C). The small value of the Bond number 
shows the strong effect of the surface tractive force relative to the force of 
gravity. We conclude that surface tension gradients can indeed be important in 
such quasi-one-dimensional examples as considered, with very thin liquid layers 
of mm size or less, or in a reduced gravity environment (termed microgrmity). 
For example, a crystal grown from its melt under reduced gravity is governed by 
convection driven by thermally induced surface tension gradients rather than 
buoyancy forces (Ostrach 1983, Xu tk Davis 1983).  The reader should be 
cautioned, however, that steady-state solutions are not always achievable for 
arbitrarily imposed physical conditions such as a specified free surface tempera- 
ture distribution (Yih 1968, Pimputkar & Ostrach 1980, Xu & Davis 6984). 
An example to be discussed in the next section is cellular convection induced by 
surface tension gradients. 

As we have shown, the surface forces a t  an interface depend upon the 
surface tension gradients there. If adsorbed surface-active materials are distrib- 
uted at  an interface, then this distribution must be known to determine the 
surface forces, since the surface tension gradients depend on the local surface 
concentration of adsorbed material. The surface mass concentration of the 
adsorbed substance follows from an interfacial mass balance. 

Because the interface is generally in motion, it is convenient to derive the 
mass conservation relation at  the interface, employing a moving control surface. 
Typically 3 “pillbox” control volume straddling the interface is used. Any net 
convective outflow is then governed by the relative velocity u,,, = u - u,, with 
respect to each area element n dA.  Thus the outflows are calculated with respect 
to an observer moving with the velocity u,, of an element of the control surface. 

The derivation of the overall interfacial mass conservation equation is 
carried out in a fashion similar to the bulk mass conservation derivation in 
Section 3.1. The result will be of the same form as Eq. (3.1.4), except for the 
additio_n of a term corresponding to the “jump” in pure, across the interface. 
With r the interface mass density (kg m-2) ,  the equation is 

ai; - 
- + V, - Tu, + [pure,] n = 0 
d t  

(10.5.21) 
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where the subscript s refers to the surface, n is the outward unit normal, and the 
brackets denote the jump in pure, across the interface. 

If we consider the system as a binary one with a surface-active material 
and bulk liquid, it is physically instructive to write the individual material 
balance relation for the surface excess concentration r (mol m-2).  The pro- 
cedure for this is exactly as was carried out for the bulk binary system treated in 
Section 3.3. No chemical reaction a t  the interface is assumed, the system is 
considered to be dilute, the multicomponent mass flux is assumed to follow 
Fick’s law, and the diffusion coefficients are taken to be constant. The expres- 
sion for the surface concentration then becomes 

d r  - +Vs-(rus)= D,V;r+[DVc] .n  
d t  

(10.5.22) 

where us = molar average velocity 
= the mass average velocity for the dilute system considered 

D, = binary interfacial diffusion coefficient 
D = binary diffusion coefficient of the dissolved surface-active tnaterial 
c = bulk molar concentration of the surface-active material 

Equation (10.5.22) shows that the local interfacial concentration varies as 
a result of local and convective acceleration along the interface and surface 
diffusion, and the “jump” term represents the difference in diffusion of dis- 
solved surface-active material to or from the adjacent bulk solution. An 
assumption made in writing the jump term in the way done is that the 
adsorption-desorption kinetics are assumed to be rapid compared with the 
diffusion rate; that is, the surface concentration is always assumed to be in 
equilibrium with the concentration of surface-active material in the liquid 
immediately adjacent to the interface. This need not necessarily be true. It is 
clear from Eq. (10.5.22) that the velocity distribution in the liquid must be 
known to define the interface distribution of surface-active material. This 
distribution in turn defines the surface forces, which couple to the velocity 
distribution, thereby making, in general, a relatively difficult closure problem. 

One important enhanced oil recovery procedure is the displacement of oil 
in porous strata by foam flooding. Such flows are exceedingly complicated, 
including the factors influencing bubble size and the tendency for the bubbles to 
block a large percentage of the flow paths in the complex porous geometry. 
Herbolzheimer (1988),  in an effort to better understand the phenomena, 
reexamined the Bretherton problem discussed in Section 10.3, wherein an air 
bubble is used to blow a viscous liquid out of a circular capillary, leaving a thin 
film deposited on the inside wall. In the analysis of Bretherton (1961), where the 
motion of a long closed bubble was considered, the interfacial tension was 
assumed everywhere constant. To relate to the flooding problem in which 
surfactants are employed, Herbolzheimer assumed that surfactant was added to 
the liquid surrounding the bubble. As described, for example in Section 4.3, 
capillary flows are often used to model porous media flow. 

Herbolzheimer observed that as the bubble travels down the capillary, the 
flow in the surrounding liquid causes a nonuniform distribution of surfactant to 
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develop on the bubble surface. Thus the mechanical boundary condition of Eq. 
(10.5.3) by means of Eq. (10.5.22) becomes coupled to the flow in the 
surrounding liquid through the transfer of the surfactant between the liquid and 
the interface. In an analysis that we outline below, he showed that the surfactant 
addition strongly alters the flow pattern, resulting in pressure drops to push the 
bubble through the capillary with a given velocity, which can be from two to 
four orders of magnitude larger than those in the absence of surfactant. 

The “clean” capillary bubble problem previously analyzed is sketched in 
Fig. 10.3.3. In treating this problem in the presence of a surfactant, for 
convenience we modify the geometry slightly and suppose the bubble to be 
closed and long, as Bretherton originally did. We employ a reference frame in 
which the bubble is stationary, as shown in Fig. 10.5.2, so that the fluid is seen 
as flowing from the front to the rear of the bubble. As in Section 10.3, the 
interfaces a t  the front and rear menisci are shaped differently. The radius of the 
rear cap is somewhat larger than that of the front cap, and the transition of the 
lubrication-film layer to the rear meniscus is inflected. For the simplified analysis 
to be presented we neglect these differences, taking both the front and rear 
bubble caps to be hemispherical with radii equal to the capillary radius a. The 
length of the constant thickness lubrication-film layer is 1. 

With surface-active material present the convection of the liquid, from 
right to left in the reference frame in which the bubble is stationary, results in a 
nonuniform surfactant distribution on the bubble surface. The surfactant is 
swept toward the rear of the bubble where it accumulates. As a consequence, 
the surface tension varies along the bubble with its lowest value at  the rear end. 
The surface tension gradient exerts a tractive force on the bubble and increases 
its resistance to motion under a driving pressure gradient p r  - p , .  

At this point it is useful to recall some results from the earlier Bretherton 
analysis for bubble motion with no surfactant present. We note first that in this 
case the boundary condition a t  the interface is that the shear stress vanishes at  
the bubble surface, the gas viscosity being so much smaller than that of the 
liquid. From Bretherton’s result for the interface shape at the front end in the 
overlap region between the hemispherical cap and the film layer (Eq. 10.3.18), 

- - -- 
Pl 

I u,=o P? 

U 
1 

Figure 10.5.2 Air bubble moving in capillary filled with a viscous liquid as viewed in a 
reference frame with the bubble fixed and the capillary wall moving from right to left. 
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the true mean curvature for small capillary number of the central portion of the 
front meniscus region is not quite 2 / a  but is (2la)Ll + l .79(3Ca)2/3] .  The first 
term in brackets is the static contribution to the curvature, and the second term 
is the change in curvature resulting from the fluid motion in the central region of 
the meniscus. It follows from the Young-Laplace equation that the dynamic 
portion of the pressure drop at the front meniscus is 3 . 5 8 ( ~ l a ) ( 3 C a ) ~ / ~ .  The 
curvature increase at the rear meniscus is somewhat different, and the dynamic 
pressure difference there is - 0.94(a/a)(  3Ca)2’3, which gives a total pressure 
drop to drive the bubble of 

(10.5.23) 2 / 3  5 
U 

p 2  - p1 = 9.40Ca 

An important feature of Eq. (10.5.23) is that it shows pressure drop is 
independent of bubble length. This is a consequence of the fact that the zero 
shear stress condition at the interface results in the fluid in the film layer slipping 
by with no drag force, with all the pressure drop taking place in the front and 
rear overlap regions of the meniscus. Since Ca < 1, not only is the pressure drop 
relatively small, but from Eq. (10.5.23) the drop goes as u ” ~ ,  indicating that 
with a lower surface tension the driving pressure will decrease. Herbolzheimer 
has pointed out that this prediction “fails spectacularly,” since experimentally 
measured pressure drops increase by orders of magnitude when surfactant is 
added. However, there is no error in the analytical approach of Bretherton. The 
error, as Herbolzheimer recognized, is in trying to apply Bretherton’s result to a 
physical situation for which it is not applicable, namely to the different type of 
flow condition prevailing at  a bubble interface when surface-active materials are 
present. 

To explain the seeming paradox discussed, we consider the limiting case in 
which the transfer of surfactant takes place only by surface convection. We 
assume the capillary number is small, and essentially we follow Herbolzheimer’s 
approach. If we make Eq. (10.5.22) appropriately dimensionless, choosing U as 
the characteristic velocity, a as the characteristic length, and D as the diffusion 
coefficient, then both terms on the right side of Eq. (10.3.22) are on the order of 
Pe-’, where Pe= UalD.  For the steady flow configuration examined with 
Pe 9 1, surface convection is large compared with diffusive transfer, and Eq. 
(10.5.22) reduces to V, * Tu, = 0. From continuity V, *us  = 0, whence the 
expression for the excess surface concentration simply becomes 

(VJ) ‘Us = 0 (10.5.24) 

Since what is of interest here is finite V,r, and since V,r is parallel to us, we 
must have us = 0. The condition us = 0 at the interface implies that the 
surface-active substance on the interface is insoluble, and the surfactant film 
behaves like an incompressible thin solid membrane at  which the liquid velocity 
drops to zero (in a reference frame where the bubble is fixed). With the 
tangential velocity zero at the bubble surface, the change in velocity across the 
lubrication film is much sharper than in the absence of surfactant, where the 
shear stress is zero at the bubble surface. 



348 Surface Tension 

The zero-velocity condition at  the bubble surface dramatically increases 
the shear stress in the film, which remains essentially of uniform thickness. 
Employing a simple force balance on the moving fluid in the lubrication layer, 
we get, corresponding to Eq. (9.1.10), 

2 r a l p  U 
v a 2 (  p 2  - p , )  = 2ral.r, = 

sf 
(10.5.25) 

where T$ is the constant shear stress in the film. In order to evaluate the pressure 
drop to drive the bubble, we must determine the film thickness Sf. Although we 
have indicated that the pressure change with surface-active material present is 
large compared with the clean case, this actually results from only a relatively 
small fractional change in surface tension along the bubble, a result that we 
shall show a posteriori. 

With the assumption that G is a slowly varying function of x, we can again 
use the dip coating momentum equation (Eq. 10.3.2) to calculate the lubrication 
film thickness a,, the term 8”du ldx  being neglected as small. The boundary 
condition at  the bubble surface (Eq. 10.3.3b) changes to 

u = O  at  y =  6(x) (10.5.26) 

and for the assumed profile in the film the volume flow rate of “lubricant” per 
unit width is half that given by Eq. (10.3.6), or 

(j = $6, (10.5.27) 

Carrying out the integration of Eq. (10.3.2) and applying the new 
conditions given above, we obtain the same equation as Eq. (10.3.7), except 
that the factor 3 is replaced by 6. The resulting equation can thus be trans- 
formed to the universal form of Eq. (10.3.8) with the 3 in the definition of 5 
replaced by 6. The solution procedure follows exactly as in the dip coating and 
clean bubble problem, giving for the lubrication film thickness, in place of Eq. 
(10.3.17), 

s 
a = 0.643(6Ca)213 (10.5.28) 

Substituting this value of the film thickness into Eq. (10.5.25), we find the 
relation for the pressure drop driving the bubble to be 

( 1  0.5.29) 1 1 3  _a _I p 2  - p ,  = 0.942Ca 
a a  

Now the total pressure drop driving the bubble is also given by the 
difference in pressure drops at  the front and rear menisci. In particular, 
p 2  - p1 = ( p 2  - p , )  - ( p1 - p ” ) ,  whence from the Young-Laplace equation 

2 
(10.5.30) P 2  - PI = a (Gcront  - u r e a , )  
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Here, we have invoked the assumption made earlier that the front and rear 
bubble caps are spherical and each of radius a. Inserting the value of p 2  - p1 
from Eq. (10.5.29), we arrive at the expression for the maximum difference in 
surface tension between the front and rear of the bubble: 

(10.5.31) 

This relation shows that for Ca < 1, as assumed, the fractional change in a 
along the bubble surface is relatively small, allowing terms in daldx in the 
momentum equation to be neglected. 

The film thickness as given by Eq. (10.5.28) is seen to increase by only 
about 59% from the constant (T result of Eq. (10.3.17), and both have the same 
behavior with capillary number. On the other hand, the pressure drop is 
increased markedly from the clean bubble value of Eq. (10.5.23). With surfac- 
tant present the pressure drop is proportional to Ca”311a, whereas for constant 
surface tension it goes as Ca2l3. For small values of Ca, around 10-4 the 
difference in driving pressure with surfactant is about two orders of magnitude 
higher than it is in the absence of surface-active material. The pressure drop 
with surfactant more closely approaches the constant surface tension value as 
Ca increases, the difference being relatively small at  Ca - lo-’. This may 
explain the experimental observations of Bretherton (1961), Schwartz et al. 
(1986), and others who have shown in “clean” systems for capillary numbers 
less than to a systematic increase with decreasing Ca, roughly power 
law in character, in the measured fractional change in bubble speed W over that 
predicted theoretically (Eq. 10.3.22). Since W== 2af/a,  this result says that the 
experimental film thickness correspondingly increases with a decrease in Ca over 
the value predicted by Eq. (10.3.17), in the same fashion as the fractional 
change in bubble speed. Herbolzheimer argues that this and other differences 
noted at  very low Ca in systems assumed to be “clean” may derive from the 
presence of trace amounts of surface-active impurities, which could lead to a 
change in the bubble motion dynamics in the direction illustrated, consistent 
with the surfactant analysis presented. 

A phenomenologically closely related problem to the one just examined is 
that of the “calming effect of oil on troubled waters.” Damping of waves on 
liquids by surface-active materials is complicated by the close coupling between 
the boundary conditions at the wave surface and the fluid motion below. In 
Section 10.4 we examined clean, undamped, and growing capillary waves in the 
absence of viscosity. We propose here to introduce viscosity and briefly sketch 
the strong viscous damping effect on capillary waves that results from the 
presence of a layer of insoluble surface-active material on the wave surface. If a 
surfactant is present on a wave traveling along a liquid surface, the surfactant 
concentration will vary with position along the interface, giving rise to surface 
tension gradients. These gradients affect the surface force balance and lead to a 
viscous surface boundary layer in which the tangential stresses can increase 
markedly from their value in the bulk fluid. A graphic example of this is the 
large increase in shear stress that we saw to take place in the lubrication film 



350 Surface Tension 

adjacent to an air bubble in a capillary when surfactant is added at  the interface. 
Such enhanced shearing can greatly increase the viscous dissipation a t  the wave 
surface, causing strong wave damping far in excess of that which might result 
solely from viscous stresses acting throughout the wave. 

Before showing the relatively strong damping effect that a surfactant can 
exert on plane capillary waves, we first consider the pure viscous damping of 
deep water capillary waves, with the flow taken to be laminar. The liquid 
viscosity is assumed low enough that it does not appreciably affect the fluid 
motion or wave frequency. In this case the irrotational wave motion solution 
given by Laplace's equation, which was discussed in the preceding section, 
satisfies the Navier-Stokes equations but does not satisfy the viscous boundary 
conditions at  the wave surface, particularly the vanishing of the tangential 
viscous stress, leading to a boundary layer-type behavior there. The solution to 
this problem is to be found in numerous texts (Levich 1962, Lighthill 1978, 
Miller & Neogi 1985). It has exactly the same form as given for the ideal fluid 
except that there is an exponential attenuation of the wave amplitude with time 
exp( - P,,), = ot ) ,  where 

pu,=o = ( 2 k ) k v  (10.5.32) 

with k the wave number and v the kinematic viscosity. What this shows is that 
the viscous attenuation of the irrotational fluid motion in time takes place 
approximately over the depth k-' below the surface, which is that region in 
which the fluid motion associated with the undamped wave dies off exponen- 
tially. 

Let us now look a t  the same capillary wave with surfactant present on the 
wave surface. As in the bubble problem, we again consider the limiting case of a 
concentrated monolayer of surfactant in which the surfactant transfer takes 
place only by convection and Eq. (10.5.24) holds, For small-amplitude surface 
waves the condition at  the wave surface may be evaluated at the undisturbed 
liquid level (cf. discussion leading to Eq. 10.4.16), whence 

u , = O  a t z = 0  (10.5.33) 

With this condition, as for the bubble problem, the change in velocity through 
the wave becomes much sharper than for a clean surface, where the viscous 
boundary condition at  the surface is that of zero tangential stress. 

Equation (10.5.33) implies, as noted in connection with Eq. (10.5.24), 
that the surfactant film is incompressible and behaves like a membrane or thin 
metal sheet that bends as the surface deforms but which is inextensible; that is, 
it neither contracts a t  the wave trough or expands at  its crest (Levich 1962).  The 
effect is the inhibition of longitudinal motion, which is replaced by a transverse 
wave motion-in other words, a laminar viscous wave that propagates into the 
fluid in the - z  direction because of the surface deflection. 

At this point we digress slightly to recall the classic Stokes oscillating 
boundary layer problem (Lighthill 1978, Landau & Lifshitz 1987). In this 
problem a large volume of fluid, say in the region z<O, is bounded by a solid 
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plane wall at  z = 0 and is subjected to a spatially uniform pressure gradient 
d p , / d x ,  which oscillates sinusoidally in time with frequency w. The solution is 
quite straightforward, and it shows the development of a velocity profile u(z ,  t )  
in the fluid below the wall, which can be characterized as a damped transverse 
wave of wave number k = ( w / 2 v ) l i 2  propagating in the - 2  direction. The 
transition to  the irrotational solution, where the velocity oscillations are in 
phase with those of the external motion to within about S%, takes place in a 
boundary layer thickness 

112 

S S t o k e s  = 2( 2 )  (10.5.34) 

From the description of the Stokes problem, we conclude that the incom- 
pressible surfactant film causes an oscillating Stokes-type boundary layer to 
develop, which is the predominant damping mechanism. By the same argument 
as before, the amplitude of the wave solution satisfying Laplace’s equation is 
modified by an exponential attenuation exp( -/3,,=ot). Here, however, we take 
the attenuation length to be given by the viscous boundary layer thickness of Eq. 
(10.5.34), from which, by comparison with Eq. (10.S.32), 

(10.5.3s) 

2 l i 2  For ( w l v k  ) % 1,  Eq. (10.5.35) is the result obtained by Levich (1962) 
through a detailed wave analysis treatment. However, we must admit to a small 
“fudge” by our selective choice of definition for the Stokes boundary layer 
thickness. We would also point out that no properties of the surface-active 
material appear explicitly in our solution because of the limiting case treated. 

, which is assumed to be large compared with 
unity, is proportional to the ratio of the damping coefficient with surfactant (Eq. 
10.5.35) to that without (Eq. 10.5.32). This quantity, which we denote by B ,  
may also be written in terms of wave speed c and wavelength A as 

2 112 The quantity (wlvk  ) 

1 I2  112 .=($I =(%) 2 7Tv (10.5.36) 

For purposes of estimate let us choose c to be the minimum wave speed 
associated with the transition from capillary wave to gravity wave dominance in 
the undamped case (Eq. 10.4.20), and A the associated wavelength (Eq. 
10.4.21). If we take A,,,,,, = 1.7 X m and c,,, = 0.23 m s-’ for water ( v  = 

m2 s-’), then B = 25, showing the criterion of B being large compared 
with unity to be met. Although this is only a rough estimate, for example u with 
surfactant will be lower than that for clean water, it nevertheless shows that 
capillary wave damping with surfactant is large compared with damping 
without surfactant. A similar result can also be shown for gravity waves (Levich 
1962). Our  discussion thus provides, at  least in part, an answer to Plutarch’s 
question of the calming effect of oil on the sea. 



352 Surface Tension 

10.6 Cellular Convection Induced by Surface Tension 
Gradients 

In the preceding section, we have examined a variety of steady thermocapillary 
and diffusocapillary flows. Not all such flows are stable and in fact surface 
tension variations a t  an interface can be sufficient to cause an instability. We 
consider here the cellular patterns that arise with liquid layers where one 
boundary is a free surface along which there is a variation in surface tension. It 
is well known that an unstable buoyancy driven cellular convective motion can 
result when a density gradient is parallel to but opposite in direction to a body 
force, such as gravity. An example of this type of instability was discussed in 
Section 5.5 in connection with density gradient centrifugation. 

In a series of beautiful experiments at  the turn of the 20th century, BPnard 
(1900) observed that hexagonal convection cells formed within thin films of 
molten spermaceti about 0.5-1 mm deep that were heated from below, with the 
cell spacing somewhat more than three times the liquid depth. These cells are 
now referred to as Bknard cells and a plan photograph of the cells from one of 
Btnard’s original photographs is shown in Fig. 10.6.1. The liquid film is molten 
spermaceti on a flat surface, which is heated from below by steam. The upper 
surface of the film is in contact with the air. Although Btnard initially assumed 
that surface tension at the free surface of the film was an important factor in the 
cell formation, this idea was abandoned for some time as the result of the work 
of Rayleigh (1916) who analyzed the buoyancy driven natural convection of a 
layer of fluid heated from below. He found that if hexagonal cells formed, the 
ratio of the spacing to cell depth almost exactly equaled that measured by 
BPnard, an agreement which we now know to have been fortuitous. 

Rayleigh showed that if the cells are to form, then the vertical adverse 
temperature gradient must be sufficiently large that a particular dimensionless 
parameter proportional to the magnitude of the gradient exceed a critical value. 
We now term this parameter the Rayleigh number 

gyPh4 Ra = - 
V a  

(10.6.1) 

Figure 10.6.1 Plan photograph taken by 
Henri Benard of hexagonal cells in a thin 
film of molten spermaceti from his original 
experiments on convection cells induced by 
surface tension gradients. [Courtesy of Prof. 
Simon Ostrach. From BCnard 1900.1 
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Here, p is the magnitude of the vertical temperature gradient across the liquid 
layer of height h and y is used to denote the thermal expansion coefficient of the 
fluid (Eq. 3.2.17) to avoid confusion with the thermal diffusivity a. 

It was the experimental work of Block (1956) which put to rest the 
confusion surrounding the interpretation of BCnard’s experiments, and which 
demonstrated conclusively that BCnard’s results were not a consequence of 
buoyancy but were surface tension induced. Among other things, he showed 
that cellular convection took place for Rayleigh numbers more than an order of 
magnitude smaller than required by the Rayleigh theory. Most importantly if 
the cells are buoyancy induced, then if the thin film is cooled from below the 
density gradient and gravity will be in the same direction and the film will be 
stably stratified. In such an experiment Block observed Btnard cells. He also 
produced Btnard cells and then removed them by covering the surface with a 
monolayer of surfactant. These together with other experiments led him to 
conclude that for thin films of thicknesses less than 1 mm, variations in surface 
tension due to temperature variations were the cause of Binard cell formation 
and not buoyancy as postulated by Rayleigh. It is now generally agreed that for 
films smaller than about a few millimeters, surface tension is the controlling 
force, while for larger thicknesses buoyancy is the controlling force and there 
the Rayleigh mechanism delimits the stable and unstable regimes. 

The phenomenon of surface tension induced Binard cells is commonly 
observed in the drying of paint with the appearance of what is usually called an 
“orange peel” pattern. The cause of the orange peel or Btnard cells is the 
surface tension gradient induced along the paint film by the rapid cooling effect 
at the free surface associated with the evaporation of the volatile solvents in the 
paint. Again, the orange peel effect is independent of whether the free surface of 
the paint layer is topside or underside, the latter case being convectively stable. 

The mechanism of BCnard cell formation, also termed the Marangoni 
instability, was first elucidated and demonstrated theoretically by Pearson 
(1958) who, unaware of Block’s experimental work, showed that if there was 
an adverse temperature gradient of sufficient magnitude across a thin liquid film 
with a free surface that such a layer could become unstable and lead to cellular 
convection. Following Pearson, the instability mechanism is illustrated in Fig. 
10.6.2. There a small disturbance is assumed to cause the film of initially 

Figure 10.6.2 
tension gradient. 

Instability mechanism for BCnard cell formation induced by a surface 
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uniform thickness to be heated locally at  a point on the surface. This results in a 
decreased surface tension and a surface tension gradient that leads to an induced 
motion tangential to the surface away from the point of local heating. From 
mass conservation, this motion in turn induces a motion of the bulk phase 
toward the surface. The upwelling liquid coming from the heated region is 
warmer than the liquid/gas interface. The motion is thus reinforced creating 
cellular convection patterns and will be maintained if the convection overcomes 
viscous shear and heat diffusivity. We would also note a t  this point that the 
same model, with a simple redefinition of the parameters, also applies to surface 
tension gradients induced by concentration variations. 

Pearson's theoretical treatment was based on a linear stability analysis of 
the type described in Section 10.4 in connection with jet stability to small 
disturbances and paralleled Rayleigh's analysis for buoyancy driven instability. 
He  assumed an infinite homogeneous liquid film of uniform thickness h whose 
lower surface is in contact with a rigid heat conductor at  a fixed temperature 
and whose upper surface is free. Gravity is neglected (Ra = 0 )  and a linear 
temperature distribution across the film is assumed, with the high temperature 
a t  the lower surface. The surface tension is a function of temperature alone, and 
the rate of heat loss from the free surface is also a function of temperature only. 

The details of the analysis are somewhat lengthy and we therefore aim the 
presentation at  deriving the dimensionless parameters that define the film 
stability, following the approach of Pearson. To do this, we write down the 
linearized equations and boundary conditions for the velocity and temperature 
disturbances recognizing that the problem is one of coupled flow and heat 
transfer. 

The undisturbed state is one in which the free surface is flat, the fluid is 
static, and the heat transfer is purely by conduction. The unperturbed tempera- 
ture distribution in the liquid is given by 

T = T", - PY (10.6.2) 

where Tot{, is the unperturbed steady-state temperature of the bottom surface of 
the film at  the plane y = 0. The unperturbed rate of heat loss per unit area (heat 
flux) from the upper free surface at  the plane y = h, is 

40 = kP (10.6.3) 

with k the thermal conductivity of the liquid. This relation derives from the 
condition that the rate of heat supply to the free surface from the liquid must 
equal the rate of loss of heat from the surface to the air above. The magnitude 
of qo is defined by the free surface temperature TOh and the cooling by the air 
above the surface. 

The governing equations are continuity (Eq. 3.5.1), the Navier-Stokes 
equation (Eq. 3.5.2 with g = 0) and the energy equation (Eq. 3.5.4). Linearizing 
these equations about the unperturbed state to obtain the equations for the 
disturbed field leads to 
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($ - aV)V”’ = 0 

(10.6.4) 

(10.6.5) 

where u’ is the perturbation velocity in the y-direction and T’ the perturbation 
temperature from the initial state defined by T’ = T - To. 

The boundary conditions on the velocity from the no-slip condition and 
continuity are 

(10.6.6) 

At the free surface, which is assumed to be nondeformable, corresponding to the 
limit of an appropriately defined capillary number Ca+ 0, 

au‘ 

dY 
v ’ = - = O  at  y = O  

u ’ = O  at y = h  (10.6.7) 

The last boundary condition on the velocity comes from the balance 
between the change in surface tension due to temperature variations along the 
surface with the tractive force induced at  the free surface. Here, as in Section 
10.5, the rate of change of surface tension is taken to be linear with temperature 

IT = IT, - IT,T; (10.6.8a) 

where u0 is the unperturbed surface tension tension at the free surface and a, is 
the surface tension gradient evaluated at  the unperturbed free surface tem- 
perature 

gT = -( ”) 
dT T=Toh 

With the aid of continuity, the boundary condition is then written 

where 

a2  a’ 
ax2 az2 

Q =-+-  
1 

(10.6.8b) 

(10.6.9a) 

(10.6.9b) 

The critical parameter, although not the only one, governing the instability 
of a thin liquid film due to temperature induced surface tension gradients 
follows from the inhomogeneous boundary condition Eq. (10.6.9), the homoge- 
neous boundary conditions introducing no parameters. With h the characteristic 
length scale, u - alh, and T’ - p h  the boundary condition is seen to introduce 
the dimensionless parameter 
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(10.6.10) 

This parameter is termed the Marangoni number. As discussed below, if Ma 
exceeds a critical value, an unstable convective flow will develop. The Maran- 
goni number can also be interpreted as a thermal Peclet number (Eq. 3.5.16) if 
the characteristic velocity for the surface tension driven viscous flow is taken to 
be that of Eq. (10.5.5). We emphasize that this velocity is not a given parameter 
but rather a derived quantity. Expressing this velocity in terms of the imposed 
uniform temperature gradient p, with the aid of continuity, we arrive at Eq. 
(10.6.10). Interpreted as a Peclet number, the Marangoni number is a measure 
of the heat transport by convection due to surface tension gradients to the bulk 
heat transport by conduction. 

We next consider the boundary conditions on the disturbance temperature. 
At the lower surface, in the case where the conductivity of the rigid plate is large 
compared to the liquid, it is 

T’=O at y = O  (10.6.11a) 

which corresponds to a fixed temperature at  the surface. Alternatively if the 
plate is of low conductivity compared to the liquid 

at  y = O  
dT‘  - = o  
dY  

which corresponds to a fixed heat flux surface. 
At the free surface, from Eq. (10.6.3) 

-QT’  at y = h  
dT’ 

dY 
- k  - - 

(1 0.6.1 lb)  

(10.6.12) 

where the heat flux from the free surface is defined by 

4 = 4 0  + QTE, (10.6.13) 

Here, Q is the surface heat transfer coefficient, that is, the rate of change with 
respect to temperature of the heat flux from the free surface to the air. Again, 
with h the characteristic scale, the boundary condition Eq. (10.6.12) introduces 
another dimensionless parameter called the Biot number 

Bi=-=-  hQ hlk 
k 1 /Q 

(10.6.14) 

The right hand term of the equation shows the Biot number to characterize the 
ratio of the thermal resistance of the liquid layer to the thermal resistance of the 
external environment. 

In the next step of the analysis, the forms for the perturbation velocity and 
temperature are taken to be satisfied by normal modes 
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(10.6.15a) 

(10.6.15b) 

where p is the amplification factor. Introducing these solutions into the linear- 
ized disturbance equations (10.6.4) and (10.6.9,  and separating variables 

(10.6.16a) 

[ e - ( D 2 - L 2 ) ] g = - f  (10.6.16b) 

where D = d/dy and k” is a real horizontal wave number. Together with the 
boundary conditions, these linear equations define the eigenvalue problem. The 
solutions depend upon the Prandtl number appearing in Eq. (10.6.16a), the 
Marangoni and Biot numbers from the boundary conditions, and the wave 
number. However, Pearson only sought those solutions for neutral stability 
( p = 0), corresponding to the onset of convection, so that the instability is time 
independent as a consequence of which the results are independent of Pr. 

From Pearson’s solutions for Bi = 0, with the fixed temperature boundary 
condition (Eq. 10.6.11a), the critical Marangoni number Ma, = 80, while for 
the fixed heat flux boundary condition (Eq. 10.6.11b) Ma,=48.  The critical 
Marangoni numbers increase with increasing values of the Biot number. Thus 
increasing the thermal resistance of the film is stabilizing as might have been 
anticipated on physical grounds. For a survey of extensions of Pearson’s 
treatment to finite capillary and Rayleigh numbers, the reader is referred to the 
review of Davis (1987). 

The analysis with disturbance quantities of the form of Eqs. (10.6.15) 
indicates a periodic structure in the x ,  z plane but the shape of the cells 
associated with the solution is not specified and higher order nonlinear theory is 
required to define a particular cellular structure. Palm (1960) has shown that in 
the parallel Rayleigh problem for steady buoyancy driven convection of a liquid 
film heated from below, the cells approach a hexagonal form as a consequence 
of the variation of the kinematic viscosity with temperature. 
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Problems 

10.1 A small quantity of a substance such as a fatty acid is added to the surface 
of a liquid such as water so that it spreads out to form a monomolecular 
film on the liquid, thereby lowering its surface tension. 
a. If the surface excess concentration of the substance in the surface film 

is proportional to its bulk concentration, show from the Gibbs 
equation that the surface tension decrease of the liquid Au = RTIA, 
where A is the area per mole of the substance in the surface film. 
The decrease in the liquid surface tension with the bulk substance 
concentration is measured and the slope of the measured surface 
tension versus the natural logarithm of the bulk substance con- 
centration a t  20°C is found to be -10 m N  m-'. What is the surface 
excess concentration? What is the area of surface occupied by a 
molecule of the adsorbed material? 

10.2 A volume V of a liquid of density p and surface cension u is contained 
between two parallel, concentric circular disks that are oriented horizon- 
tally and separated from each other by a distance a. A thin circular 
capillary tube of radius a is connected to the upper disk a t  its center and 
oriented vertically. The liquid level in the tube measured upward from the 
center of the space between the disks ( a / 2 )  to the meniscus is H (the 
meniscus height itself is taken to be small). The distance the liquid extends 
radially outward between the disks, measured from the centerline of the 

b. 
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capillary to the meniscus formed between the disks, is held to a radius R,  
such that R S- a and H S- a. The static contact angle is denoted by 0 and 
the system is open to the atmosphere. 
a. Assuming alpga’ * 1, obtain an implicit relation for R and an implicit 

relation for H as a function of V, a, a, p, and g. 
b. If the liquid is water, what are the numerical values of H ,  R ,  and V 

when H = R = 10a. Is any assumption made satisfied? 
10.3 A semi-infinite solid slab is dipped vertically into a large pool of liquid 

open to the atmosphere. As a result of surface tension, the liquid rises 
above the pool level to meet the slab on its face a t  the contact angle 
6, < ~ / 2 .  The geometry is two-dimensional, and a rectangular Cartesian 
coordinate system is chosen with origin at  the intersection of the slab face 
and the undisturbed pool surface. The coordinate y is measured vertically 
upward from the undisturbed pool level, and the coordinate x is measured 
into the raised liquid. 
a. If 6(x) is the vertical height of the liquid-air interface (at the pool level 

6 ( x )  = 0), show that 6(x) is governed by the differential equation 

Sff  = P g g  
(1 + 6 ’ 2 ) 3 ’ 2  a 

b. Assume that (1 + 
c. 

= 1 and solve for 6 ( x ) ,  using the result of 
part a. 
Suppose that the criterion for the assumption in part b is that 
(1 + 6 r 2 ) 3 ’ 2  5 1.05. Determine the minimum contact angle at  the 
surface O,,,, ,  for which this requirement is met. 
In the case that 0, < eon,,,, at  a distance x = x, the tangent to the 
liquid-air interface will have an angle e = 8, = O,,,,,. Let z = x - x, 
and obtain an expression for 6 ( z )  valid for z 2 0. Section 10.3 states 
that the differential equation governing the interface geometry is 
invariant to a shift in origin. Does this result suggest the truth of the 
statement and why? 
If gravity cannot be neglected, to what would the Landau-Levich 
differential equation governing the film thickness in dip coating (Eq. 
10.3.9) be modified? What does the parameter measure that appears 
in this modified equation? 
If the film thickness ratio r] = 6/6, is close to 1, both the Landau- 
Levich differential equation and the differential equation accounting 
for gravity can be linearized. Carry this out and show that under an 
appropriate transformation the linearized equation with gravity in- 
cluded has the same form as the linearized Landau-Levich equation. 
Show that this transformation depends only on the capillary number, 
if the effect of gravity is small but finite, and that the transformation is 
a measure of the first-order effect of gravity in decreasing the asymp- 
totic film thickness 6,. 

10.5 It was shown from linear stability theory that a circular jet will become 
unstable to axisymmetric disturbances whose wavelength A = 27r/k is 

d. 

10.4 a. 

b. 
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greater than the circumference of the undisturbed jet 2rra. Suppose that as 
a consequence of small axisymmetric disturbances the radius r of the jet 
surface is given by 

Y = a, + a, cos k z  

where a, is a dimension of the order of the undisturbed jet radius a, z is 
the cylindrical coordinate along the symmetry axis, a. cos k z  -G a,, and 
k > 0 .  
a. 
b. 

Show that a,, = a [ l  - i ( a o / a ) ’ ] .  
Show for the small deformation considered that the surface area of the 
deformed jet is z[27ra, + $rr(ka,)’a], and justify the conclusion that 
the jet will be unstable to axisymmetric disturbances whose wave- 
length is greater than the undisturbed jet circumference. 

10.6 Consider an air bubble moving in a capillary filled with a viscous liquid 
(Fig. 10.5.2). The capillary number is small. With surfactant in the liquid 
and with its diffusivity neglected, a surface tension gradient is set up by 
convection which is expressed by Eq. (10.5.31). 
a. If mass transfer due to diffusion of the surfactant along the surface 

and between the bubble surface and the liquid is no longer negligible, 
what will happen to the pressure drop required to drive the bubble 
and why? 
Derive an estimate for how the gradient in surface tension would be 
modified if the velocity at  the bubble surface in the lubrication film 
region us were not zero (when the bubble is viewed as stationary) but 
still small compared with the bubble velocity U.  
Diffusion leads to surfactant being adsorbed from the liquid at  the 
nose of the bubble and desorbed from the rear cap of the bubble to the 
liquid. A finite value of us also results. Consider diffusion to the nose 
of the bubble, and from Eq. (10.5.22) show with us << U an order-of- 
magnitude estimate for us is given by 

b. 

c. 

U Pe 

where Ca = p U l a  
Pe = UaID 
D = dissolved surfactant diffusivity 

1 = bubble length 

The surface concentration r, like the surface tension u, is an appro- 
priate characteristic value. In deriving the result, take the diffusion 
boundary layer thickness on the nose of the bubble to be given in 
order of magnitude by 6 - ~ / ( u , a / D ) ’ ’ ~ .  

10.7 Show that the Rayleigh number (Eq. 10.6.1) can, like the Marangoni 
number, be interpreted as a thermal Peclet number. 
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Arrhenius law, 56 
Avogadro’s number, 123 
Axial ratio, 113 

Batch sedimentation, 132-142 

flux-density curve for, 137-141 
hindered settling in, 135-140 
in inclined channel, 141-142 
kinematic shock waves in, 133-135, 

kinematic waves in. 137, 138 
x-t diagrams for, 134-138 

orange peel effect, 353 

140-142 

Benard cells, 352, 353 

Berman velocity profile, 76,77 
Bernoulli equation, unsteady, 330. 336 
Bidisperse suspensions, 298,299 
Bimodal model, suspension viscosity, 

Binary: 
298-302 

electrolyte, 44, 45, 165 
system, 24 

Bingham plastic, 280,282,283 
Biot number, 356 
Blasius flat plate boundary layer solution, 

78,81 
Body force, 32 

electric, 43 
gravitational, 32 

Boltzmann distribution, 192, 198, 

Bond number, 3 1 5 3  17,3 18,320,343 
Boundary layer approximation, 59,60, 

253 
Boundary layer, concentration, see 

Boundary layer, diffusion 
Boundary layer, diffusion, 59-62 
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Boundary layer, diffusion (Continued) 
developing: 

in channel with rapidly reacting 

in channel with soluble walls, 62-67 
in electrodialysis channel, 176-182 
in reverse osmosis channel, 70-78, 

walls, 64, 67 

180, 181 
development length: 

in channel with soluble walls, 62-64 
in reverse osmosis channel, 71,77, 78 
flow past a reacting flat plate, 78-81 
around spherical collector, 252-255 

Boundary layer, thermal, 64 
developing in channel, 64 

Boundary layer, viscous, 59-61 
developing in channel, 62 
development length in channel, 62 
flow past reacting flat plate, 78-8 1 
in ultracentrifuge cell, 146, 153 

Boycott effect, 141 
Brownian diffusion, 116, 119-123, 

246-248,25 1-256 
coefficients, 120-123, 252 

relative motion between particles, 247 
rotational, 121 - 123 
time, 130, 247 
translational, 120-123,252 

forces, 289 
Brownian flocculation, 246-25 1, 274, 275 
Brownian motion, 107, 112, 116-123, 156, 

158, 159,246-248 
and option pricing, 117 
rotational. 117, 119 
suspension rheology, effect on, 124, 

translational, 117, 119 

flotation terminal speed, 132 
pressure difference across surface, 310 
translation coefficient for, 11 1 
viscosity of suspension of, 129, 130 

130,290,291 

Bubbles, spherical: 

Bubble motion, in liquid-filled capillary, 

effect of surfactant on, 339, 345-350 
324-326,345-350 

Cake filtration, 251, 267 
Capillarity, 3 14, 3 15 
Capillary: 

length, 316, 329 
models of porous media, 96,98-102, 

158, 197,202,345 

motion, 314-318 
number, 317,319,321 
pressure, 314-317,320,329 
time, 337 
waves, 327,329,331,336,339,349-351 

damping of, 339,349-351 
dispersion relation for, 336 

Capillary zone electrophoresis, 230 
Cathode, 166, 167 
Cations, 166, 182 
Cavitation in lubrication bearings, 324 
Cell models, 267-273. 298 
Cell reaction, 173 
Cellular convection, 338, 339, 352-357 

buoyancy driven, 352-354,357 
surface tension driven, 352-357 

Centrifugal sedimentation, 142-1 54, 228. 
See also Centrifugation; 
Ultracentrifugation 

Centrifugation, 143-145. See also 
Ultracentrifugation 

density-gradient, 153, 154,230 
Centrifuges, 144, 147. See also 

Ultracentrifuges 
Channel flow, 62,63,65 

with permeation, 71,72 
with rapidly reacting walls, 64,67 
with soluble walls, 64-67 

direction, 189 
equations, 137, 148 
parameters, 45-50 
solutions, 148, 189 
speed, 137, 141, 148 

Characteristic: 

Characteristics, 136-141, 148, 149, 189 
Charge : 

conservation, 43. See also Current 
continuity 

density, 43,192 
isolated, 215 
of macromolecules in solution, 21 1,212 
neutrality, see Electroneutrality 
number, 27, 170 
of particles in solution, 190, 195, 21 1, 

of polyelectrolytes, 214 
transport, 26-28 

adsorption, 57,212 
potential, 40, 156 

Chemisorption, 57,212 
Chilton-Colburn analogy, 80, 81 

212 

Chemical: 
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Chromatography: 
basis of, 96-98 
in electrophoresis, 228-230 
elution, 98 
gel, 96-103,158 
high-performance liquid, 102, 103 
high-pressure liquid, 102 
hydrodynamic, 158-160 
ion exchange, 183 
size exclusion, 96, 158, 183, 229 

Circular tube, flow in, see Pipe flow 
Clarifier-thickener, 137 
Clays, 5 

charge on, 21 1,212 
Coalescence of particles, 237,238 
Coarse relative viscosity, 300, 301 
Coating flows, 3 18-326,339 
Coefficient of thermal conductivity, see 

Coions, 190 
Collectors. see also Particle capture 

assemblage of spherical, 270-272 
efficiency, 272 

cylindrical, 255-266 
efficiency, 256,258,265,266 

ideal, 252 
spherical, 252-259,265 

efficiency, 255,257-259,265,271 
Colloid stability, 237-246 
Colloidal, see also Colloidal suspensions 

dispersion, 109, 237 
particle, 109, 110 

Thermal conductivity 

Brownian motion, 118, 119 
surface charge in solution, 214 

phase, 116 
Colloidal suspensions, 9, 110, 280, 

282-284,288-292. See also 
Concentrated suspensions; Dilute 
suspensions; Suspensions 

forces in, 289,290 
pipe flow, 282-284 
relative viscosity, 290. 291 

Complex reaction, 55 
Compressibility, 2 
Compressibility coefficient, 37 
Concentrate, 68 

Concentrated suspensions, 9,273,281, 
channel, 175-177 

284,288,289,292-302 
apparent viscosity, 279 
bimodal model of, 298-302 
cell models, 273, 298 

forces in, 289 
high shear limit, 292-299 
maximum packing fraction, 289, 

microstructure, 297, 298 
non-uniform shear flows, 284,292 
viscosity, 28 1, 290-293,295-302 

bulk-average, see Concentration, 
mixing-cup 

cross-sectional average: 
over circular tube, 89 
between plates, 106 

292-297 

Concentration, 22 

formulas for, 23 
mass, 22 
mixing-cup: 

in channel, 76 
in circular tube, 105 

molar, 22 
surface excess, 308, 345 
surface mass, 344,345 

Concentration boundary layer, see 
Boundary layer, diffusion 

Concentration overpotential, 172, 177 
Concentration polarization: 

electrodialysis, 176 
electrolytic cell, 165, 167, 169 
reverse osmosis. 70. 73, 76, 77 
ultrafiltration, 154-1 56 

Conductivity, see Electrical conductivity: 

Conservation: 

continuity 

equation 

Thermal conductivity 

of charge, 43. See also Current 

of energy, 34, 35. See also Energy 

laws, 9 
of mass, 31,44,90, 133,344,345. See 

also Continuity equation 
Consistency index, 281 
Constant-density flow, 2, 17, 36 
Constitutive relations, 9, 10 

charge flux (current density), 10, 27, 
28. See also Ohm’s law 

heat flux, 10,39. See also Fourier’s law 
of heat conduction 

mass flux, 10,40. See also Fick’s law 
of diffusion 

momentum flux (stress), 10, 12, 13, 16, 
17,38, 39,278. See also Newtonian 
viscosity law: Non-Newtonian 
fluids 
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Contact angle: 
dynamic, 313 
static, 311-313, 315 

of mercury, 316 
Contact line, 311, 312 

Continuity equation: 
dynamic, 3 13 

for binary system, 41, 146 
for incompressible flow, 32,46, 110, 

219,330 
integral form of, 31. 38, 225, 342 
species, 38 

Continuous: 
sedimentation, 139-142 

thickening, 140 
in inclined channel, 141, 142 

Continuum, 2,9 
Control: 

surface, 31, 32, 34 
volume, 3 1, 35,344 

Convective, see also Taylor dispersion in 
a capillary 

axial diffusion, 91-93 
radial diffusion. 91 

Convective diffusion equation, 41 
boundary layer, 60,7 1,78,252 
with chemical reactions, 203 
for dilute binary electrolyte or neutral 

species, 44-46, 86, 88, 165 
Convective diffusion layer characteristics, 

59-64. See also Boundary layer, 
diffusion 

Couette flow, 10-12, 124, 125,249,278-281 
apparent viscosity, 279-281 
viscometer, 124, 129 

in double layer, 190, 191 
in ion exchange, 183 

Counterions: 

Critical flocculating concentration, 245, 

Critical micelle concentration, 308 
Crowding factor, 296 
Crystal growth, 3 14, 344 
Current: 

246 

continuity, 43, 45, 165, 221 
density, 28.42 

Current-voltage characteristic: 
electrodialysis channel, 181 
electrolytic cell, 169, 170, 173, 174 

inertia free solution: 
Cylinder, infinite: 

absence of, 114,257 

for assemblages, 269 
Stokes-Oseen solution, 257,260,261 

Cylinder, long: 
rotation coefficient, 115 
translation coefficient, 113, 114 

collectors, 255-266 
jet, see Jet, cylindrical 

Cylindrical: 

Damkohler number, 58.73 
Darcy’s law, 99, 100, 155, 156, 196,267 
Deborah number, 286 
Debye length, 192, 193, 245 

Debye sheath, 43, 166. See also Diffuse 
ratio, 199, 219 

electric double layer 

Debye shielding distance, 192 
Debye-Hockel approximation, 193 

in charged pore, 195 

potential distribution from, 193,201, 
2 18,240 

Deionization of water, 183 
Density: 

mass, 22 

number, 128 
at interface, 344 

Density-gradient centrifugation, 153, 154, 

Depth filtration, 251 
Detergents, 307 
Developed profile in channel, see Fully 

developed profile 
Developed profile in channel, see 

Boundary layer 
Development length in channel, see 

Boundary layer 
Dialysate channel, 175-178 
Dielectric constant, 42, 43 
Diffuse electric double layer, 43, 166, 

in charged cylindrical capillary, 

around charged spherical particle in 
motion, 215-223 

at electrode, 166, 167 
around ion exchange particle, 183 
spherical, 212,213 

axial, 83, 86, 87 
binary, 21,22,24,40,41 
boundary layer, 59-62 
Brownian, see Brownian diffusion 

230 

190-194 

197-201 

Diffusion: 
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convective axial, 91-93 
convective radial, 91 
in dilute liquid solutions, 24-26,40-42 
ionic, 22, 27. 28,41,42 
length, 82,86 
mass, 21, 24, 39-41 
multicomponent, 37-41 
potential, 161 
pressure, 22,39, 143 
radial molecular, 83,85-88 
and reaction kinetics, 53-59 
thermal, 22,39 

Diffusion coefficient, see Diffusivity, 

Diffusion controlled reaction, 54 
Diffusion layer, see Boundary layer, 

Diffusivity, mass, 21,24-26 

mass 

diffusion 

binary, 24,40 
Rrownian, see Brownian diffusion 

coefficients 
of d lu te  gases, 24 

gas pairs, 2% 
of dilute liquid solutions, 24-26 

electrolytes, 25t 
nonelectrolytes, 25t 

effective in binary electrolyte, 45, 161 
and mobility, 27,2S, 170 
multicomponent mixture, 40 

Diffusivity, thermal, see Thermal 

Diffusocapillary flows, 339 
Dilatant fluid, see Shear thickening fluid 
Dilatation, 17, 33 
Dilute solutions, 24-29 
Dilute suspensions, 9, 124-130, 133, 134, 

288,291,292 
apparent viscosity, 126, 129 
criterion for, 130 
particle fall speed, 133, 134 
viscosity, 124-130 

Dip coating, 318-323 
Dispersed phase, 2 
Dispersion, see Taylor dispersion; 

diffusivity 

Taylor-Aris dispersion 
in a capillary, 82-96 
in electrophoresis, 230 
in porous media, 98-102 

Dispersion coefficient, 82. See also Taylor 
dispersion coefficient; Taylor-Aris 
dispersion coefficient 

in a capillary, 90-92,95 

in porous media, 100-102 
Dispersion relation: 

capillary waves, 336 
surface waves, 33 1 

Dispersive waves, 327,328 
Dissipation, 10, 35, 36, 289,297 

function, 35 
Dissipative phenomena, 3 
Dissociation: 

in electrodialysis, 176 
in electrolytic cell, 173 

axisymmetric, 336 
nonaxisymmetric, 336 
plane, 327 
potential, 330, 335, 336 
pressure, 334 
temperature, 3.55 
velocity, 328, 330, 355 

Disturbance: 

DLVO theory of colloid stability, 238-245 
DNA, 145 
Donnan potential drop, 177, 181,200 
Double diffusive problems, 39, 50 
Double layer, see Diffuse electric double 

Drag models of porous media, 136, 

Drops: 

layer 

267-27 1 

satellite, 332, 333, 338 
on a solid surface, 310, 31 1 
spherical: 

formation by jet breakup, 327, 332. 

pressure difference across surface, 

translation coefficient for, 11 1 
viscosity of suspension of, 129, 130 

337,338 

3 10 

Dufour effect, 39 

Effective: 
diffusivity in binary electrolyte, 45, 161 
dispersion tensor, 96, 101 
electric field for electrophoretic 

global velocity, 96, 101 
gravity in centrifugation, 143 
gravity in sinusoidal surface waves. 329 
thermal diffusivity, 20 
velocity in interstices of porous 

medium, 98-100 
viscosity of suspension, 116, 126, 129, 

136. See also Apparent viscosity 

velocity, 221 
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Eigenfunction, 334 
Eigenvalue relation, 336 
Einstein relation: 

for diffusion coefficient: 
translational, 121, 122, 152 
rotational, 122, 123 

129, 130 
for viscosity of dilute suspensions, 

Electric: 
double layer, see Diffuse electric 

field, 26 
double layer 

about charged nonconducting 

diffusional. 165 
effective for electrophoretic velocity, 

sphere, 218,219 

22 1 
force, 27,43. 196, 239 

potential, see Electrostatic potential 
pressure, 239 

conductivity, 26, 28.42 

on charged sphere, 215, 219 

Electrical: 

bulk, 220, 23 1 
equivalent, 28 
molar, 28 
molar of ions in water, 29t 
spherical double layer, 209 

neutrality. see Electroneutrality 
Electrocapillary flows, 339 
Electrochemical: 

cell, 166, 167 
flow systems, 42 
potential, 42 
reactions, 169 
solutions, 43 

Electrode, 166-174 
inert. 173 
potential, 167, 168 
reactions, 167-170, 173 

Electrodialysis, 174-1 82 
Electrofiltration, 235 
Electrokinetic phenomena, 190, 193-195 

chemical reaction effects, 203-207 
Electrolysis, 166, 169 

of water, 173, 203 
acidbase front propagation, 203,206 

Electrolyte: 
dilute binary, 44, 45, 161 
indifferent, 45, 244 
solutions, 165-207 

Electrolytic cell, 165-174 
Electromigration, 18, 26,41,42, 171, 204, 

207 
velocity, 203,229 

condition of, 43,44, 170. 202 
criterion for, 187 

Electroosmosis, 195-206,211-213 
in charged cylindrical capillary, 

in charged porous medium, 196, 197, 

in electrophoresis, 224-226, 230 
and sedimentation potential, 230,232 
uses of, 195 

Electroosmotic: 
current in charged capillary, 202,231 
pressure, 195 
purging, 203,205,206 
velocity, see also Helmholtz- 

Smoluchowski equation 

Electroneutrality, 43,44, 192 

196-204,230-232 

202,203,232 

bulk  204 
in charged capillary, 196,197,201 
past plane charged surface, 197, 

volume flow rate in charged capillary. 
216 

197,201,231 
Electrophoresis, 195. 21 1, 214-223, 230 

capillary zone, 230 
chromatographic separation in, 

gel, 229 
micro, 223,224,227 
moving boundary, 223,227,228 
relaxation in, 217, 222, 223 
retardation in, 217-220,223 
surface conductance in, 217,220-222 
uses of, 21 1,223 
zone, 223,228,229 

mobility, 228,229 
motion of charged spherical particle, 

retardation, 217-220,223 
separations, 223-230 

228-230 

Electrophoretic: 

214-223 

Electrophoretic velocity, see a150 Henry 

of charged nonconducting sphere, 
equation 

2 16-222 
large Debye length, 216,217,220. 

See also Huckel equation 
chemical reaction effects, 203-207 small Debye length,215, 217, 220. 
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See also Helmholtz-Smoluchowski 
equation 

Electrostatic potential, 26, 216 

in charged capillary, 199 
about charged nonconducting 

about charged nonconducting 

in electrodialysis cell, 176, 177, 179 
in electrolytic cell, 171, 172 

energy, 191 
Electrostatic repulsive force (energy): 

between charged particles, 238, 289 
between parallel plates, 238, 241 
between identical spheres, 238, 241, 242, 

distribution: 

cylinder, 234 

sphere, 2 18-22 1 

245 
Ellipsoid of revolution, see Spheroid 
Elution: 

chromatography, 98 
volume, 98, 102 

conservation, 34 
equation, 35 

Energy: 

electrochemical system, 44 
incompressible flow, 36,46 
multicomponent, 39 

flux, phenomenological relation for, 39 
transport, 39 

Enthalpy, 35 
equation for rate of change, 35 

Entropy, 35 
equation for rate of change, 35 

Entry region, see Boundary layer, 

Equations of change, see also 
developing 

Conservation 
characteristic parameters for, 45-50 
for charged species, 41-45 
for isothermal flow, 31-34 
for multicomponent fluid, 37-41 
for nonisothermal flow, 34-37 

Equation of state, 36 
Equilibrium potential of metal-ion 

electrode, 167, 168 
Equipartition of energy, 116 
Equivalent, 28, 184 

concentration, 184 
conductivity, 28 
diameter, 100 
ionic fraction, 183, 184 
radius, 110 

volume, 114 
Excess pressure in surface waves, 328-330 
Exchange current density, 167 
Exchange zone front, 186-190 
Excluded volume, 159,160, 164,296 
Extensive thermodynamic property, 10, 

307 

Fall speed, see Terminal speed 
Falling film, 65 
Faraday constant, 27 
Favorable ion exchange, 184 
Fibrinogen, 4, 5 
Fick's law of diffusion, 9 

first, 24, 25,40 
second, 41 

Filler dilatancy factor, 295 
Filter coefficient, 271, 272 
Filtration, 134, 267, 270-273. See also 

Electrofiltration; Ultrafiltration 
cake, 25 1,267 
depth, 251 

Fine relative viscosity, 300,301 
First law of thermodynamics, 34 
Floc, 237 
Flocculation: 

Brownian, 246-25 I ,  274 
critical electrolyte concentration for. 

gradient (velocity), 248-25 1 
Peclet number for, 251 
rapid, 243,244,246 
slow, 246 
time. 248, 25 1 

Flow radius, 286 
Flotation, 131 

of spherical bubbles, 132 
Flow approximations, 2, 3 
Fluid approximations, 2, 3 
Fluidity limit, 292 
Foam flooding, 345 
Focusing metal precipitate, 207, 230. See 

Fouling of membranes, 208 
Fourier's law of heat conduction. 9, 17 
Fractals, 7, 119 
Free surface: 

boundary conditions at, 320, 330 
flows, 318 

Friction coefficient, 1 10, 11 1. See also 

245,246 

also Isoelectric focusing 

Translation coefficients 
for diffusion and sedimentation. 152 
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Friction coefficient (Continued) 
mean, 112, 121 
sphere, 112, 113, 132 

Friction tensor, 110, 131 
Froude number, 47 
Fully developed profile: 

concentration: 
in channel with soluble walls, 63 
in electrodialysis channel, 178 
in reverse osmosis channel, 71 

with permeation, 71 
velocity, in channel/pipe, 62, 63 

Galvanic cell, 166. 167 
Gamma function, 66, 67 
Gas constant, 28,37,287 
Gauss's theorem, 3 1 
Gaussian distribution. 93, 101. 117 
Gel: 

chromatography, 96-103. 158 
electrophoresis, 229 
permeability, 155, 156 

concentration of, 157, 158 
a s  molecular sieves. 96 
osmotic pressure of, 155-156 
as  reverse osmosis membranes, 68 

equation for adsorption. 308 
free energy, 12 1 

Gels, 155-158 

Gibbs: 

Gibbs-Duhem equation. 156 
Gradient (velocity) flocculation, 248-25 I 
Graetz number, 105 
Gravity: 

drainage, 319, 323 
effective, 143, 329 
force, 32 
group. 266, 272 
sedimentation. 131-142. 146. See also 

Batch sedimentation; Continuous 
sedimentation 

waves, 327,329,331,351 

Hamaker constant, 243, 262 
Happel's cell model, 267-272 
Hardness of water, 1x3 
Heat: 

capacity. volumetric, 20. 21 
conduction equation, 41. 46 
energy, 34 
flux, 10, 39 
transfer by, 

conduction, 9, 10, 17, 18, 34, 64, 79, 80 
interdiffusion of species, 17, 39 
radiation, 17 

Helmholtz free energy. 307 
Helmholtz-Smoluchowski equation, 197, 

Hemoglobin, 4 , s  
Henry equation, 219, 220,223 
Heterogeneous reactions, 53-56 
Hexagonal convection cells, 352, 357 
High-performance liquid chromatography 

High-pressure liquid chromatography 

High shear limit, 290,292 

Hindered settling, 135-141. 150, 227 

Homogeneous reactions. 53-55 
Hiickel equation, 215,217, 220 
Hydraulic diameter, 99 
Hydrodynamic chromatography, 158-160 

Hydrodynamic stability analysis: 

201,217,220,222,226,232 

(HPLC), 102, 103 

(HPLC), 102 

relative viscosity, 292, 293, 295-299 

factor, 135 

elution by size, 159, 160 

steps in, 333, 334 
for circular jet. 334-338 

Ideal gas equation, 36,37 
Incompressible flow, 2, 32, 33, 36,46, 330 
Indifferent electrolyte, 45, 244. 245 
Inert electrodes, 173 
Inertia free flow, see Low Reynolds 

Infinite-shear-rate viscosity, 288, 290 
Intensive thermodynamic property, 10 
Interfacial: 

number flow 

concentration, 345 
forces compared to body forces, 110 
instabilities, 327-338 
mass conservation equation, 344 
mass density, 344 
phenomena, 305,314,318.327,338,339, 

tension, 305, 309, 3 10, 3 12. See also 

wave motion, 327-338,349-351 

equation for rate of change, 35 

344 

Surface tension 

Internal energy, 34 

Interstitial velocity, 98, 100. 187 
Intrinsic viscosity: 

polymers, 286, 287 
suspensions, 287, 295, 296 
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Ion exchange, 182-190 
capacity, 184 
chromatography, 183 
equilibrium, 183 
isotherm, 183- 185 

favorable, 184 
unfavorable, 184 

membranes, 174-176 
resin, 183, 186 
softening of water. 182 

breakthrough, 186 
exchange zone: 

boundary, 186 
front, 186-190 

exhaustion, 186, 187 
regeneration, 187 

Ion exchanger, 182-187 
anion, 182 
cation. 182 
exhaustion, 186 
preference of, 184, 185 

Isoelectric focusing, 229, 230 
Isoelectric point, 229,230 
Isothermal: 

Ion exchange column operation, 185-190 

compressibility, 37 
flow, equations for, 3 1-34 

Isotropic fluid, 16 

Jet, cylindrical: 
breakup of, 327,332-338 
instability of, 332-334 
stability analysis for, 296-337 

Kinematic shock waves, 133, 136 
in batch sedimentation, 133-135, 140, 

in ion exchange, 187 
in ultracentrifugation, 145-147, 149 

Kinematic viscosity, 13 
tables of, 13 
units, 13 

141 

Kinematic waves, 136. See also Kinematic 
shock waves 

in batch sedimentation, 136, 137 
in ion exchange, 187 
in ultracentrifugation, 148 

of fluid motion, 34 
translational for particles, I16 

Kirkwood-Riseman method, 115 
Kozeny constant, 100,267,269,270 

Kinetic energy: 

Kozeny-Carman equation for 
permeability, 99, 100, 196,269 

Krieger-Dougherty relation for relative 
viscosity, 295, 296 

Lamella settlers, 142 
Laminar flow. 3 
Lamm equation, 146 
Landau-Levich dip coating analysis, 

Langevin equation, 122 
Langmuir adsorption isotherm, 56,57 
Laplace’s equation, 43, 216, 220, 330 

in cylindrical coordinates, 334 
Law of mass action, 55 
Leak current, 230 
Lewis number, 50 

318-323,324-326 

for dilute gases, 49t 
for dilute solutions, 49t 

in electrodialysis, 176, 182 
in electrolytic cell, 171, 173 

Limiting film thickness: 
bubble in a capillary, 324,326,348,349 
dip coating, 321,322 

in ultrafiltration, 155, 157, 158 

for cylindrical collector, 257, 258, 

for spherical collector, 258 

between identical spheres, 243,245 
between parallel plates, 243 
in particle capture, 259-266 
between sphere and plane, 262 

Limiting current: 

Limiting flux, 59,61 

Limiting trajectory: 

263-265 

London attractive force (energy), 242, 243 

Lorentz force on a charged particle, 43, 
44 

Low Reynolds number flow, 1 10- 116. See 
also Cylinder; Lubrication; Rotation 
coefficients; Sphere; Spheroid; Stokes 
flow; Stokes-Oseen flow; Translation 
coefficients 

long axisymmetric, 114 

with electric force, 219 

drag force on a body, 121, 122, 131 

equations for, 110 

force exerted by body in, 110 
multiparticle interactions in, 115, 116, 

velocity due to point force in, 1 IS 
125 

Low shear limit, 290 
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Lubrication: 
bearings, 324 
film: 

in dip coating, 318-323 
for bubble in capillary, 324-326, 

force between particle and collector, 

theory, 320 

345-349 

260-263 

Lyophobic colloids, 237, 244 

Mach number, 2,36 
Macromolecular fluids, 279,281 
Macromolecules, 4, 109 

charge of, 21 Iff 
gelation of, I55 
microhydrodynamics of, l09ff 
models of, 5, 11  I .  123 
separation from solution: 

by electrophoresis, 223,228, 229 
by gel chromatography, 96,97 
by ultracentrifugation, 143, 146, 152 
by ultrafiltration, 154, 155 

charged, 21 Iff 
uncharged, l09ff 

solutions of: 

Magnetohydrodynamics, 22 
Marangoni: 

effect, 338 
instability. 338. 353 

Marangoni number, 356 
critical, 357 

Mass: 
average velocity, 23,24, 38 
conservation, 31,44,90, 133, 137, 344. 

See also Continuity equation 
diffusivity, see Diffusivity, mass 
flux, 23 

cross-sectional average, 89 
fraction, 22 
transfer coefficient, 79, 80 
transport, 2 1-25 

Material derivative, 11 
Maximum packing fraction, 289, 292-298 
Maxwell’s equations, 42 
Mean-field approximation, 305 
Mean molecular field, 305 
Mean square: 

displacement, 116, 120, 122 
velocity, 116 

electrodialysis, 174-176, 182 
Membranes: 

anion exchange, 174 
cation exchange, 174, 176 

ion exchange, 174, 175 
reverse osmosis, 68, 69 

asymmetric, 68 
composite, 68 
model of, 202 
solute rejection coefficient, 70, 72, 

solvent permeability coefficient, 69 
106 

semipermeable ideal, 68 

of bubble in capillary, 324,325,347,348 
in dip coating, 319-323 
shape for liquid meeting plane wall, 

in open capillary, 315,316 
in ultracentrifuge cell, 145, 146. 151, 152 

Metal-electroiyte potential difference, 167 
Micelles, 308, 309 
Michaelis constant, 57 
Michaelis-Menten law, 57 
Microelectrophoresis, 223-227 
Microgravity, 344 
Microhydrodynamics, 109, 110,237 
Migration in an  electric field, see 

Miscible dispersion, 82 
Mixed heterogeneous reactions, 54. 61 

Mobility, 27, 11 1 

Meniscus: 

322 

Electromigration 

and reverse osmosis, 68,72,73 

and diffusivity, 27, 28,42, 170 
electrophoretic, 229 
mean, 112,121 
tensor, 11 1 

average velocity, 23 
(electrical) conductivity, 28, 29 
flux, 23 
fraction, 22 
mass, 22 

mean, 22 

fraction, 22 

Molar: 

Mole, 22 

Molecular sieves, 96, 229 
Molecular weight, 22 
Moment method, 92.96, 159, 160 
Momentum: 

conservation, 32 
equation: 

boundary layer, 78 
Couette form of, 342 
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with electric force, 196, 198 

Navier-Stokes equation 
incompressible, 46. See also 

linearized inviscid, 328 
multicomponent, 38 

flux, 10 
transfer, 79, 80 
transport, 10- 13 

Monodisperse suspensions, 8 
Monolayer, 307,308 
Monomers, 284-286 
Monomolecular layer, 269 
Moving boundary electropohoresis, 223, 

227,228 

Natural convection, 3, 338, 352 
Navier-Stokes equation, 33 

with electric force, 219 
for electrochemical system, 44 
for incompressible flow, 33 
for lubrication theory, 320 
for multicomponent fluid, 38 

equation, 168, 173 
film theory, 64 
layer approximation, 64, 81, 157.254 
potential, 169,289 

Nernst: 

Nernst-Einstein equation, 28. See also 
Mobility and diffusivity 

Nernst-Planck equations, 42 
Net relative viscosity, 300, 301 
Newton’s second law, 32 
Newtonian: 

fluid, 12, 16,280 
generalized, 281,283 

viscosity law, 9, 10, 12, 15 
Nonconducting particles, 214, 217 
Nonequili brium: 

effects, 3, 10 
Nonisothermal flow, equations for, 34-37 
Non-Newtonian flow: 

Couette, 278-281 
pipe, 281-284 

Non-Newtonian fluids, 3, 12, 277-284, 
292. See also Polymers; Suspensions 

Bingham plastic, 280, 282,283 
classification, 278 
macromolecular, 279,281 
power-law, 281,283,292 
time-independent, 278 
viscoelastic, 278, 279, 286 
yield-power law, 283 

Nonsharpening exchange zone front, 189 
Normal mode representation, 334, 356, 

Normal stress, 277, 279 

No-slip condition, 11, 33, 195, 314,320 
No-temperature jump condition, 18 
Nucleic acids, separation by: 

electrophoresis, 223 
gel chromatography, 96 
ultracentrifugation, 143 

357 

coefficients, 279 

Nusselt number for mass transfer. 105 

Ohm’s law, 9,28 
Ohmic potential drop in electrolytic cell, 

165, 172 
Oil on troubled waters, calming effect 

Onsager reciprocal relation, 40.23 1 
Orthokinetic flocculation, 246. See also 

Osmotic pressure, 68-70, 155-157 

of. 339,349,35 1 

Gradient flocculation 

of aqueous solutions, 69t 
concentration dependence of, 155 
and diffusivity, 157 
in electrolyte between charged plates, 

238,240 
in gels, 155 
of macromolecular solutions, 155 

Overpotential, 168 

Partial: 
molar volume, 156 
specific volume, 143 

aggregation, 237, 238. See also Colloid 

Brownian motion of, 109, 112. 116-123. 

capture by: 

Particle(s): 

stability 

156, 158, 159,246-248 

Brownian diffusion, 248, 249, 

collectors, 25 1-267 
filtration. 270-273 
inertial impaction, 251 
interception, 251,252,256-259 
interception with surface (London) 

25 1-256 

forces, 259-266 
charge of, 21 Iff 
colloidal, 109, 110 
excluded volume, 159, 160, 164 
flocculation, see Flocculation 
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Particle(s) (Continued) 
geometry, 3-8 
inicroh ydrod yna mics of, 109ff 
models of, 5,  11 1 
number density, 128 
polarized by electric field, 214, 217 
polystyrene latex, 5. 6 
separation from solution, see 

Centrifugation; Electrophoresis; 
Filtration; Flotation; Sedimentation 

charged, 21 Iff 
uncharged, l O 9 f f  

Partition coefficient, 97 
Peclet number: 

solutions of: 

Brownian diffusion, 130, 251, 289 
diffusion, 48, 59, 73, 86, 151, 200, 252 
polymers, 286, 287 
suspensions, 289.290 
thermal, 48.64, 356 

Perfect gas equation, 37 
Perfect shielding, 191 
Perikinetic flocculation, 246. See also 

Permeability, 99. 100, 196,269 
Permeate. 68 
Permittivity, 43. See also Dielectric constant 

Perrin factor for spheroids, 112, 113 
Phenomenological, see also Constitutive 

Brownian flocculation 

o f  vacuum, 43 

relations 
description, 9 
equations, 10, 39 
model, 9 

Physical adsorption, 57,212 
Physical constants, 364 
Physicochemical hydrodynamics, 1 ,3  
Pipe flow, 63,65, 83, 197,284 

colloidal suspensions, 282-284 
with permeation, 71, 72 

Plutarch’s question, 339, 351 
Poiseuille flow, 62, 71, 214, 216, 282, 316. 

See also Channel flow; Pipe flow 
Poisson’s equation, 42,43, 191, 192. 197, 

198,212,213,218,239 
Polydisperse suspensions, 8, 135 
Polyelectrolytes, 288 
Polyethylene, 284, 285 
Polymer solutions, see Polymers 
Polymerization, degree of, 284 
Polymers, 4, 5,277-279,281,284-288,291, 

292. See also Macromolecular fluids; 
Macromolecules 

apparent viscosity, 279 
gelation of, 155 
geometry, 285,286 
as ion exchange material, 175, 182 
models of, 5, 1 15, 124, 285, 286 
as molecular sieves, 96 
relaxation time, 286, 287 
on reverse osmosis membranes, 68 
rheology of, 278,284,286 
solutions of, 284, 285 
viscosity of, 277-279. 281, 287, 288. 291, 

292 
Polystyrene, 284,285 

latex particles, 5, 6 
solutions, viscosity of, 288 

Pore geometry, 3.8 
Porosity, 99 
Porous media, 8 

capillary models of, 96,99-102, 345 
cell model of, 267-272 
charged, 196,202 
Darcy’s law for, 99, 100, 155, 156. 196, 

dispersion in, 98, 100-102 

drag models of, 136,267-27 1 
equivalent diameter in, 99 
hydraulic diameter in, 99 
interstitial velocity in, 98-100, 187 
models of, 8 
orifice models of, 267 
permeability, 99-101, 196, 269 

267 

anistropic, 101 

Kozeny-Carman equation for, 99, 
100, 196,269 

porosity, 99 
specific area, 99 
stochastic models of, 267 
superficial velocity in, 99, 100, 183 
tortuosity factor, 100, 196 
void cross-sectional area, 98 
void fraction, 98 
void volume, 98, 100 
volume fraction of grains in, 268 

Potential, characteristic, 46, 169. See also 

Potential energy. 34 
Power-law fluid, 281,283. 292 
Prandtl boundary layer argument, 59 
Prandtl number, 48,49 

Pressure diffusion, 22, 39, 143 
Primary maximum in flocculation, 243, 

Nernst potential 

for common fluids, 49t 

245 
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Principal axes of translation, I12 
Prograde rotation, 147. 153 
Proteins, 4. See also Macromolecules 

charge of, 21 1 
models of, 5 
separation of: 

by electrophoresis, 223, 229 
by gel chromatography, 96 
by ultracentrifugation, 143 

fluid 
Pseudoplastic fluid, see Shear thinning 

Radial dilution in ultracentrifugation, 
147 

Radiation, 17 
Radius of curvature: 

mean, 3 10 
principal, 3 10 

coil, macromolecules modeled as, 123 
walk of a particle, 117-120, 123 

Random: 

Rapid flocculation, 243-245 
Rate: 

constant, 55,56 
determining step, 54 
limiting step, 54 

Rate-of-strain tensor, 16, 278, 279, 281 
Rayleigh number, 352 
Reacting flat plate, flow past, 78-81 
Reaction: 

kinetics, 53-59 
order, 55 
rate, 54, 55 

chemical adsorption, 57 
diffusion controlled, 54 
heterogeneous reactions, 54 
homogeneous reactions, 54 
physical adsorption, 57 
power law relation, 55, 56 
sorption, 203, 204 
unimolecular reaction. 57 

surface, impermeable, 58. 59 
velocity, 56,58 

Real fluids, 2, 10 
Reduced ion concentration, 44, 166 
Reference: 

electrode, 168 
stresses, 15, 16 

Regeneration, ion exchange, 183, 187 
Relative viscosity, 129, 130 
Relaxation in electrophoresis, 217, 222, 

Resins, see also Gels; Polymers 
223 

ion exchange, 175, 183 
as molecular sieves, 96 

Retrograde rotation, 147, 153 
Reverse osmosis, 68-78, 154, 155, 180. 181 

batch operated, 104 
in channel, 70-78, 152, 180, 181 
membranes, 68,69,202 
and mixed heterogeneous reactions, 68, 

permeability coefficient of solvent, 69 
permeate, 68 
recovery in, 68 
rejection coefficient of solute, 70, 72, 

72.73 

106 
Reversible reaction, 55 
Reynolds analogy, 79.80 
Reynolds number, 3,48.49,62, 132, 258, 

Rheology, 3, 12,277-284 
Ribbing-line instability, 326 
Richardson-Zaki correlation, 136 
Ripples, 327. See also Capillary waves 
Rod-and-bead model, 5 
Roll coating, 323-325, 326 
Root mean square displacement, 120 
Rotation coefficients: 

cylinder, long, 1 15 
sphere, 114 
spheroid, 115 

320.341.344 

Rotation tensor, 114 
Rotational Brownian: 

diffusion coefficient. 121-123 
motion, 119 

Rotational friction tensor. 114 

Satellite drops, 332. 333, 338 
Scanning absorption optical system, 144 
Schlieren optical system, 1.50, 227 
Schmidt number, 48.49 

for dilute gases, 49t 
for dilute solutions, 49t. 59,62 

Schulze-Hardy rule, 245 
Secondary minimum in flocculation. 243 
Sector-shaped ultracentrifuge cell, 144, 

Sedimentation, 131 
145 

coefficient, 143. 146, 150 
evaluation of, 152 
values for macromolecules, 144, 152 

current, 232 
enhanced. 142 
equilibrium, 163 
potential, 195. 230, 232 
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Sedimentation (Continued) 

Sedimentation in a centrifugal field, 
of spherical particles, 131. 132 

142- 154,228. See also 
Centrifugation; Ultracentrifugation 

Sedimentation under gravity, 13 1-142. 
147. See also Batch sedimentation; 
Continuous sedimentation 

Sedimentecl layer: 
compressibility. 141 
height. 134 
maximum concentration. 134 

Self-sharpening exchange zone front, 189 
Self-similar. see Similarity 
Settling, see Hindered settling; 

Shallow water theory, 341 
Shear: 

Sedimentation 

flow. uniform, see Couette flow 
rate, 281 
stress, 10-12, 15, 279, 339, 340. 348. See 

ulso Newtonian viscosity law: 
Non-Newtonian fluids; Stress 
sign convention, 11 

surface. 193 
thickening fluid. 280, 281 
thinning fluid, 280.281 

Shear attraction number, 289, 290 
Shear repulsion number, 289, 290 
Shenvood number, 105 
S1 units, 363, 364 
Similarity: 

parameters, see Characteristic 

solution. 66,67,74-76. 180-182.254 
variable, 65. 66, 79, 80, 180, 254 

Simple reaction, 54 
Sinusoidal surface wave, 327-331 
Six exclusion chromatography, 96, 183. 

229. See also Gel chromatography; 
Hydrodynamic chromatography 

parameters 

Skin friction coefficient, 79-XI 
Slip velocity, 193, 197,216, 314 
Slow flocculation, 246 
Slurries, see Suspensions 
Softening of water, 182 
Solid body rotation, 143, 146, 147 
Soluble wall condition, 61.64 
Solutions: 

of charged: 
macromolecules, 2 1 Iff 
particles, 21 Iff 

of electrolytes, 165ff 
of uncharged: 

macromolecules, l09ff 
molecules, 53ff 
particles, l09ff 

Solvents: 
good, 285,286 
poor, 285,286 

Soret effect, 22. 39 
Space charge, 193 
Spatial homogeneity, 10 
Specific area in porous media, 99 
Specific heats, 20 
Species production rate, 38 
Sphere(s): 

Brownian diffusion coefficients of, 123 
drag force on, 1 1  1 

electrostatic repulsive force between, 

friction coefficient for, 113, 132 
hydrodynamic interactions between, 

inertia free solution for assemblage of, 

of influence of test particle, 246-250 
London attractive force between. 243, 

rotation tensor for, 114 
in shear flow, 125-127, 129 
Stokes drag law for, 11 1 
Stokes solution for flow about, 253,256 

translation coefficient for, 111-1 13 
volume fraction of, 128, 250 

bubbles, see Bubbles, spherical 
collectors, 252-259, 265, 270-272 
drops, see Drops, spherical 
particles: 

assemblage of, 267-270 
Brownian diffusion coefficients for, 

flocculation of, 246-25 I ,  214,275 
polystyrene latex, 5 ,6  
viscosity of suspensions of, 125-130. 

with surface charge, 219 

238.241.242.245 

I 15 

268 

245 

Spherical: 

123,252 

282,283,290-292,295-299 
Spheroid, long slender prolate: 

rotation coefficient, I15 
translation coefficients. 113, 114 

Spheroid, oblate and prolate, I I I ,  112 
translation coefficients, 11 1-1 14 

Spreading coefficient, 3 13 



Subject Index 397 

Square-dilution rule. 150 
Stability: 

of buoyancy driven flows, 352-354.357 
of coating flow, 326 
of colloidal suspensions, 237-244 
of a cylindrical jet, 327. 332-338 
hydrodynamic analysis of, 333,334 
of kinematic shock waves, 140 
of surface tension gradient driven 

of surface waves, 327 
of thermocapillary flows, 344 
of zonal sedimentation, 153 

Stagnation point flow, 260-262 
Standard electrode potential. 168 

of metal-ion electrodes. 16% 
Standard hydrogen electrode, 168 
Stationary level in microelectrophoresis, 

Stefan flow, 57 
Steric: 

flows, 338, 352-357 

225-227 

capture. 251, 267 
repulsion. 238 

layer, 193, 194 
plane, 193 

drag law (for a sphere), 1 1  1 
equation, 110, 115 
number, 317 
oscillating boundary layer, 351 
solution for flow about a sphere, 253, 

-type drag law, 121 

Stern: 

Stokes: 

256 

Stokes-Einstein equation. 123. See also 
Brownian diffusion coefficient, 
translational 

alternative form in ultrafiltration, 156 
Stokes-Oseen solution for flow past a 

cylinder, 257, 258, 260, 261 
Stream surfaces, volume flow rate 

between, 257 
Streaming: 

current, 230, 232 
potential, 195, 230-232 

dyadic, 33 
reference, 15, 16 
tensor, 10, 16, 17, 278. 279, 281 

Stress, 10. See also Shear stress 

muhicomponent mixture, 38, 39 
Newtonian fluid, 16,39 
Non-Newtonian fluids, 278-283 

Strong interactions, 1, 53,57 
Strouhal number, 47, 150 
Structural units, 4. 284, 285 
Substrate, 57 
Superficial velocity, 99, 100, 188 
Surface: 

conductance, 217,220-223 
current density, 221 
excess concentration, 308, 345 
forces, 32. 33. 237, 238, 289, 339. 344 
gradient, 221,339 
mass concentration, 344, 345 
permeation, 61, 71 

Surface-active materials, see Surfactants 
Surface charge, 214 

distribution. 21 3 
origin of, 190. 195. 211, 212 
relation to surface potential, 193. 

2 12-214 
Surface potential. 193, 199, 212-214. See 

Surface tension, 305-357 
curvature from, 309 
defined by free energy change, 306,307 
of liquid-vapor interfaces, 307t 
measurement: 

by capillary rise method, 3 16 
by capillary wave speed. 331 

also Zeta ( 5 )  potential 

physics of. 305-3 14 
and pressure difference across curved 

interface, 309, 310. See a l ~ o  
Young-Laplace equation 

surfactant, effect on, 307, 308 
temperature, effect on, 307 

for liquids, 307, 344 
of water, 307t. 316, 344 

units. 307 

cellular convection induced by, 

flows driven by, 314,315,331, 

from surfactant concentration change, 

from temperature change, 307.355 

Surface tension gtadients: 

352-357 

338-357 

307,308 

Surface waves, 327-332.336.339.349-3s 1. 
See also Capillary waves; Gravity 
waves 

Surfactants, 307, 308 
bubble motion in capillary, effect on, 

foam flooding. use in, 345 
339.345-350 
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Surfactants (Continued) 
interfacial mass conservation equation 

wave damping due to, 331, 349-351 
Suspensions, 8, 116. See ulso Brownian 

motion; Colloidal suspensions; 
Concentrated suspensions: Dilute 
suspensions: Flocculation; Hindered 
settling; Sedimentation 

for, 344, 345 

bidisperse, 298,299 
concentrated, criterion for, 288 
dilute, criterion for, 130 
microstructure, 130, 278, 297, 298 
monodisperse. 8 
phase, 116, 124 
polydisperse, 8, 135 
as porous medium, 136 
rheology, 284, 288-290 
viscosity of 

concentrated, 281,290-293.295-302 
dilute, 124-130 

Svedberg. 143 
equation, 152 

Symbols, 365-377 
Symmetrical salt, 191 

Taylor dispersion: 
in electrophoresis, 230 
in porous media. 98, 100-102 

coefficient of, 101, 102 

159. 160 
Taylor dispersion in a capillary, 82-96, 

coefficient of, 82,90,95, 160, 164 
by convective axial diffusion, 91-93 
by convective radial diffusion (Taylor 

equation of, 90 

experiment on, 92-95 
generalized, 95,96 
macroscale, 96 
microscale, 96 
moment method. 92,96 
by radial molecular diffusion, 83. 85, 

solution range, 91-93 
Taylor-Aris dispersion: 

in a capillary, 91-93, 159 
coefficient of, 91 

in porous media, 100 
Tensor, 15, 16. 38, 39 

solution range), 9 1-93 

as “model” equation, 92 

87, 88 

Terminal speed (velocity), 131, 132, 135 
in centrifugation, 143 
of a sphere, 132 
of spherical: 

bubbles, 132 
drops, 132 

Ternary system, 24 
Thermal: 

diffusion, 22, 39 
entry region in channel, 64 
expansion coefficient, 37 

Thermal conductivity, 17-21 
of water, 37 

of air, 20, 20t 
of gases, 19t 
of liquid sodium, 20,20t 
of liquids, 19t 
units, 19t 
of water, 19t, 21 

of air. 20, 20t 
anisotropic, 20,21 
of gases, 19t 
of liquids, 1% 
of liquid sodium, 20,20t 
units, 19t 

in shallow pan, 340-344 

Thermal diffusivity. 18, 20. 24, 36 

Thermocapillary flow, 334.339 

Thermodynamic force, 121. 156 
Thin-film model, 157. See nlso Nernst 

layer approxiniation 
Time-independent fluids, 278 
Tiselius electrophoresis method, 227, 

Tobacco mosaic virus, 5, 6 
Torque on a particle, 1 I4 
Tortuosity factor, 100, 196 
Translation coefficients, 110 

bubble, spherical, 11 1 
cylinder. long, 114 
drop, spherical, 11 1 
sphere, 111-113 
spheroid, long slender, 11 3, 1 14 
spheroid, oblate and prolate, 11 1-1 14 

228 

Translation tensor, 110 
Translational Brownian: 

diffusion coefficient, 120-123, 252 
motion, 117, 119 

Translational friction: 
coefficient, see Friction coefficient 
tensor. see Friction tensor 
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Transport: 
of charge, 26-28 
effects, 2, 3, 10 
in fluids, Yff 
of heat, 17, 18,39 
of mass, 2 1-26 
of momentum, 10-14 

Turbulent flow, 3 

Ultracentrifugation, 144- 154 
batch, 144, 153 
continuous, 144. 153 
molar mass from, 152 
radial dilution in, 147 
square-dilution rule for, 150 
in sector-shaped cell, 145-154 

Ultracentrifuge, 144, 145 
analytical, 144, 145 
-electrophoresis apparatus, 235 
preparative, 144, 145 

Ultrafiltration, 154-1 58 
Unfavorable ion exchange. 184, 185 
Unwetted surface. 313 

Valence, 170 
van der Waals attractive forces, 212,238, 

242.289,305. See also London 
attractive force 

van't Hoff equation, 68 
Velocity gradient flocculation, see 

Gradient flocculation 
Velocity potential, 216, 330 
Velocity profile in channellpipe flow, 62, 

63 

Viruses, 5 
Viscoelastic fluid, 278, 279, 286 
Viscosity, 10, 13, 15. See also 

Non-Newtonian fluids 

with permeation, 71 

of air, 13t 
apparent, 12, 129,279-283.300 
coarse relative, 300, 301 
effective, 116, 126, 129, 136. Sepulso 

Apparent viscosity 
fine relative, 300, 301 
of gases, 14t 
high shear relative, 292,293, 295-299 
infinite-shear-rate, 288. 290 
intrinsic, 286, 287, 295, 296 
of liquids, 14t 
net relative, 300, 301 

of polymers, 277-279.281.287,288,291, 

relative, 129, 130 
of suspensions: 

292 

concentrated, 281,290-293,295-302 
dilute, 124-130 

units, 13t 
ofwater, 13t 
zero-shear-rate, 287, 290 

Viscous: 
flows, 3 
fluids, 2, 10 
relaxation time. 123, 131 

cross-sectional area, 98 
fraction, 98 
volume, 98 

Void: 

available, 100 
Volume expansivity. 37 
Volume flow rate in capillary. 197 

Volume fraction: 
electroosmotic, 197. 201, 202, 231 

coarse, 300-302 
fine filler, 300-302 
of grains in porous medium, 268 
of spheres, 128,250 
of spherical collectors, 27 1 

Volumetric heat capacity, 20,21 
Vorticity, 125. 147 

Water, properties of: 
compressibility coefficient, 37 
dielectric constant, 43 
kinematic viscosity, 13t 
molecular dimension, 109. 308 
thermal conductivity, IYt, 21 
thermal diffusivity, 19t 
thermal expansion coefficient, 37 
Prandtl number, 49t 
surface tension, 307t, 316 

gradient with temperature change. 
344 

viscosity, 13t 
Watson-Crick hypothesis, 154 
Waves: 

capillary, 326,327,329-332,336,351 
dampening of, 33 1,339,349-35 1 
deep water, see Waves, surface 
gravity, 327,329,330,351 
sinusoidal, 327-33 1 
stability of, 333. 334 
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Waves (Continued) 

Weak interactions, 1,80,260 
Wetting, 312, 313 

coefficient, 3 12 
complete. 312. 313, 319, 321 

surface, 327-332,336,349-351 

Yield-power law fluid, 283 
Yield stress, 280, 282 
Young's equation, 3 11,3 12,3 14 

Young-Laplace equation, 309,314, 316, 
320,329,335,340,347,348 

Zero-shear-rate viscosity, 287, 290 
Zeta (0 potential, 193, 199, 203, 212, 214, 

233, 240. See also Surface potential 
typical value, 197 
volume average, 204,207 

Zonal sedimentation, 153,229 
Zone electrophoresis, 223, 228, 229 



6 Solutions of Electrolytes 

6.1 The Electrolytic Cell 

The fluid mechanical and electrical equations governing the distribution of ion 
concentration and potential in flowing electrolyte solutions were set down in 
Section 3.4. Recall that for dilute solutions the ion flow is due to migration in 
the electric field, diffusion, and convection. For simplicity of presentation the 
following discussion will be restricted to a dilute binary electrolyte, that is, an 
unionized solvent and a dilute fully ionized salt. 

It was shown in Section 3.4 that if the bulk of a dilute binary electrolyte 
solution may be assumed electrically neutral, then the distribution of reduced 
ion concentration is governed by the same convective diffusion equation as for a 
neutral species with an effective diffusion coefficient related to the difference in 
charge and diffusion coefficients of the positive and negative ions. Once the 
concentration distribution has been found, the potential distribution in the 
solution can be obtained by integrating the equation for current continuity (Eq. 
3.4.16) to give 

(6.1.1) 

The potential difference can be seen to be made up of two terms. The first 
term represents the ohmic potential drop due to the flow of current through a 
medium of given electrical conductance. The second term, called the diffusion 
potential drop, is associated with a region in which there is a concentration 
gradient (concentration polarization region). This term does not disappear in the 
absence of a current and is due to unequal rates of diffusion of the charged 
particles, thus giving rise to a diffusional electric field. 

165 

Physicochemical Hydrodynamics: An Introduction, 2nd Edition. Ronald F. Probsiein 
Copyright 0 1994 John Wiley & Sons, Inc. 

ISBN: 0-471-0101 1-1 



166 Solutions of Electrolytes 

To  define a unique solution, we must specify the corresponding boundary 
and initial conditions. Normally electrolyte solutions are in contact with or  
bounded by electrodes. An electrode in its simplest form is a metal immersed in 
an electrolyte solution so that it makes contact with it. For example, copper in a 
solution of cupric sulfate is an example of an electrode. A system consisting of 
two electrodes forms an electrochemical cell. If the cell generates an emf by 
chemical reactions at the electrodes, it is termed a galvanic cell, whereas i f  an 
emf is imposed across the electrodes it is an electrolytic cell (Fig. 6.1.1). If a 
current is generated by the imposed emf, the electrochemical or electrolytic 
process that occurs is known as electrolysis. Now whether or not a current 
flows, the electrolyte can be considered to be neutral except at the solution- 
electrode interface. There a thin layer, termed a Debye sheath or electric double 
layer, forms that is composed predominately of ions of charge opposite to that 
of  the metal electrode. We shall examine this double layer in Section 6.4, but for 
our purposes here it may be neglected. 

By way of example consider the electrolytic cell of Fig. 6.1.1 with two 
copper electrodes in a solution of cupric sulfate. The cupric sulfate will 
dissociate into charged cupric ions Cuz+ and sulfate ions SO:-. When a 
potential difference is applied between the electrodes, there will be a current 
flow and reactions at the electrode. The electric field drives the cupric ions 
(cations) toward the negative electrode (cathode) and the sulfate ions (anions) 
toward the positive electrode (anode). At the anode there will be a dissolution of 
copper, 

CU-, c u 2 +  + 2e- (6.1.2) 

Figure 6.1.1 Electrolytic cell. 
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while at the cathode there will be a deposition of copper. In general, the 
electrode at which an electron-producing reaction, such as given by Eq. (6.1.2), 
takes place is the anode, and the electrode at which electrons are consumed is 
the cathode. The cathode is negative in an electrolytic cell, as shown in Fig. 
6.1.1, and is positive in a galvanic cell. The current (flow of electrons) in'the 
external circuit is from anode to cathode in both types of electrochemical cell. 

In the electrolytic cell of Fig. 6.1.1 the cupric ions and sulfate ions both 
contribute to the conduction mechanisms, but only the cupric ions enter into the 
electrode reaction and pass through the electrode-solution interface. The elec- 
trode therefore acts like a semipermeable membrane which is permeable to the 
Cuz+ ions but impermeable to the SO:- ions. Anions accumulate near the anode 
and become depleted near the cathode, resulting in concentration gradients in 
the solution near the electrodes of both ions. This is termed concentration 
polarization, in accord with the meaning of the phrase when applied to neutral 
species. 

As discussed above, concentration gradients will produce a potential drop. 
Because of the electrode reaction even at  equilibrium, that is, with no current 
flow, there will be a potential drop. The formation of this metal-electrolyte 
potential difference, which is based on a metal-ion potential, arises from the 
transfer of metal ions from the metal into the electrolyte, and vice versa. This 
transfer of metal ions through the electric double layer (here assumed infinitely 
thin) takes place simultaneously in both directions. The amount of this transfer- 
ence is generally not equal in both directions and gives rise to the metal- 
electrolyte potential difference. This electrode potential is the potential differ- 
ence that forms at  the boundaries of the two phases. 

When no current flows in the outer circuit and the metal dissolution is fast 
in comparison with metal deposition, the metal is charged negatively with 
respect to  the electrolyte. The potential of the metal becomes more negative with 
respect to the electrolyte. In this way the rate of metal dissolution is retarded, 
and the rate of metal deposition is accelerated. The potential will become more 
negative until an equilibrium potential % is reached. This is equivalent to 
chemical equilibrium with a chemical reaction. In this case the rates of metal 
dissolution and deposition are equal. 

When the potential of the metal is more negative than the equilibrium 
potential, metal deposition is more rapid than metal dissolution. The entering 
positive charge from the metal ions shifts the potential to more positive values 
until the equilibrium potential is reached. At this point both processes occur at 
equal rates. Each process involves an exchange current density which is equal in 
magnitude and opposite in sign to  that of the other, so that the net current is 
zero. In the absence of an external current, the equilibrium potential 8 is the 
stable limiting value. 

In place of the reaction of Eq. (6.1.2), let us consider the general 
equilibrium electrode reaction 

Me-, Mez++ + z+e- (6.1.3) 

where Me denotes the metal considered. 
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Now the electrode potential can only be measured against a reference 
electrode. The standard hydrogen electrode is usually used as the reference 
electrode, and it is arbitrarily taken to have a potential of zero. The standard 
hydrogen electrode is "platinized" (high surface area) platinum immersed in an 
acid containing H' ions a t  an activity of 1 mol dm-3 and dissolved hydrogen 
gas at  atmospheric pressure (Vetter 1967).  The overall electrode reaction is 

H,-+2Hi + 2e- (6.1.4) 

The equilibrium potential of a metal-ion electrode in conjunction with a 
standard hydrogen electrode to form a complete cell can be shown to be given 
by (Castellan 1983, Koryta & Dvorak 1987) 

(6.1.5) 

where a M e z +  = activity of metal ions in solution 
a M r  = activity of pure metal 
8" = standard electrode potential of metal-ion electrode 

This equation is known as the Nernst equatiotz. By convention the activity ratio 
for both anode and cathode is the ratio of the activity of the oxidized species to 
that of the reduced species, where 

oxidized species + z electrons reduced species 

Here, the number of electrons that enters into the reaction is equal to the charge 
number z ,  or 12-1. Note that what is relevant is the number of electrons that 
enter into the reaction, and this number may not always be equal to the charge 
number. For example, the oxidation of ferrous to ferric is represented by 
Fe2+ -+ Fe3+ + e-. 

When there is a net current through the electrolytic cell, the rates of 
deposition and dissolution are not equal. As a result, the potential drop at  the 
electrode surface is different from the equilibrium potential. The difference is 
called the overpotential. If the magnitude of the external current density is small 
compared to the exchange current density, the departure from equilibrium is 
also small. In this case, the electrode potential is close to the equilibrium value 
given by the Nernst equation and for practical purposes, the overpotential can 
be neglected. It should be noted that two or more electrode processes that have 
different equilibrium potentials may occur independently of each other at  the 
same metal surface (Newman 1991). 

The standard electrode potential 8" is a characteristic value of a metal and 
its valence, the solvent, the temperature, and the pressure. Table 6.1.1 lists the 
standard electrode potentials of some metal-ion electrodes. The least noble 
metals have the most negative values, and the noblest metals have the most 
positive values. 
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Table 6.1.1 
Standard Electrode Potentials of Metal-Ion Electrodes at  

25°C and Atmospheric Pressure in Aqueous Solution" 

Electrode Potential, V 

Li /Li+ 
Na/Na' 
AI/A13+ 
ZnIZn2+ 
Ni/Ni2+ 
HJH' 
c u  /cu + 

AgIAg' 
Au/Au3' 

-3.04 
-2.71 
-1.66 
-0.762 
-0.25Oh 

0 
0.342 
0.799 
1.50b 

"Koryta & Dvorak (1987). 
bVetter (1967). 

The activity of the pure metal may be assumed to be constant, and 
incorporated in 8". For dilute solutions, where activity may be replaced by 
concentration, we have 

RT 
Z,F 

$? = go + - ln(c+)e,  (6.1.6) 

where the subscript el denotes the ion concentration at  the electrode surface. 
The last term depends on the concentration of metal ions at the interface 
between the electrolyte and electrode. It arises from the equilibrium requirement 
of a balance between ions crossing the interface in both directions. Because the 
standard electrode potentials tabulated in the literature are effectively for a 
concentration of 1 mol d n ~ - ~ ,  the concentration appearing in Eq. (6.1.6) must 
also be in these units. The characteristic potential RTIF, sometimes referred to 
as the Nernst potential, appears frequently in electrochemical studies and has a 
value of 25.7mV at 25°C. 

Our considerations have centered on the ion transfer from the bulk of the 
solution to the electrode surface. As in any heterogeneous reaction, however, it 
sometimes is necessary to consider the rate of the electrolysis reaction and the 
rate of product deposition or dissolution at  the electrode surface. Generally, the 
ion transfer step is the slowest, and in what follows we shall assume this to be 
the case. Discussion of the potential drops associated with finite-rate electro- 
chemical reactions and finite electrode reaction rates may be found in Levich 
(1962) and Newman (1991). 

By way of example, let us consider the simple electrolytic cell of Fig. 6.1.1, 
containing a motionless dilute binary metal electrolyte. We wish to determine 
the current-voltage characteristic of the cell, that is, the concentration polariza- 
tion. To do  this, we must calculate the flux of metal ions (cations) arriving at  the 
cathode and depositing on it. As noted above, we assume that the overall rate of 
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the electrode reaction is determined by this flux. Once the cation distribution is 
known, the potential drop can then be calculated. Note that the anions are 
effectively motionless and do not produce a current. 

The electrodes of the electrolytic cell are taken to be infinite planes at the 
anode ( y = 0)  and cathode ( y  = h) .  Since the electrolyte velocity is zero, it 
follows from the definitions of the current densities i, = Fz ,  j z  and Eq. (3.4.1) 
for the molar fluxes that 

dc ,  F 2 z t D  c d$ 
+ + -  

RT d y  
i+ = -D+Fz+ - - 

dY 
(6.1.7) 

(6.1.8) 

where the mobilities have been replaced by the diffusion coefficients through the 
relations u,  = D,/RT. The current has only a y component, and z+ and 2- are, 
respectively, the charge numbers (valences) of the positive and negative ions, 
with z ,  positive and 2- negative. The condition of electroneutrality is assumed 
to hold within the fluid; that is, 

z+c+  + z-c -  = 0 (6.1.9) 

Let us now consider the solution of the current density equations subject 
to the electroneutrality condition. From the solution the current-voltage charac- 
teristic is determined. Our approach will be to first find the concentration 
distribution and then express the potential drop in terms of this distribution. 

In the simple electrolytic cell only the cations deposit on the cathode. The 
flux of anions, and therefore the anion current at  the cathode, must be zero. 
However, since the electrolyte is motionless, the anion current must be every- 
where zero; that is, 

i- = O  (6.1.10) 

The current flowing in the cell due to electromigration and diffusion is thus due 
only to the cation transport. It is the magnitude of this current which we wish to 
determine for a given value of the applied voltage (or vice versa). 

As in Section 3.4, it is convenient to express the basic equations in terms of 
the reduced ion concentration 

c ,  c-  
v, v- 

c = - = -  (6.1.11) 

where Y, and v- are the number of positive and negative ions produced by the 
dissociation of one molecule of electrolyte. In terms of v the electroneutrality 
condition becomes 

z ,  v, = - z -  v- (6.1.12) 
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while Eqs. (6.1.7) and (6.1.8) may be written 

where the anion current has been set to zero. 
From Eq. (6.1.14), 

d 4  RT dc  
d y  Fz-c d y  
- -  

(6.1.13) 

(6.1.14) 

(6.1.15) 

This equation states that the migration of anions under the prevailing potential 
gradient is balanced by the diffusion of the anions in the concentration gradient. 
O n  using this relation to eliminate d+ldy in Eq. (6.1.13) and replacing z ,  u+lu- 
by - 2 - ,  we find 

(6.1.16) 

Since there is a fixed current for a given applied voltage, it follows that c must 
be linear in distance across the cell, y .  Now i+  > 0 and z +  - z _  > 0,  so 
d c l d y < O ;  that is, the concentration of cations decreases from anode to 
cathode. The potential drop is also in the same direction. From charge neutrality 
c + / c -  = constant, so the anion distribution behaves similarly to the cation 
distribution, which was noted earlier in the discussion of the characteristics of 
the electrolytic cell. 

The concentration distribution is fixed by specifying the reduced ion 
concentration at  the anode: 

c = c ,  a t y = O  (6.1.17) 

The concentration c, is not known in advance, but must be determined from the 
overall conservation of species if we know the initial uniform species con- 
centration and the concentration drop across the cell, which for a given voltage 
or  current is specified by the solution. Integrating Eq. (6.1.16) and applying this 
boundary condition gives 

‘+Y 
D+Fv-(z+ - Z - )  

c = c , -  

The concentration at the cathode ( y = h ) ,  denoted by c,, is 

i+h  
D+Fu-(z+ - Z - )  

c, = c, - 

(6.1.18) 

(6.1.19) 

When c, = 0, the current density approaches a limiting value given by 
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(6.1.20) 

I n  this equation, from conservation of species we have used the condition 
cc + c, = 2c0, where c,) is the initial uniform reduced species concentration. This 
diffusion limiting current is reached when the cations at  the cathode have been 
completely depleted by the electrode reaction. As we show below, it is attained 
at sufficiently large values of applied voltage. 

To obtain the potential distribution, we substitute the concentration 
distribution of Eq. (6.1.18) into the integral form of Eq. (6.1.13), which on 
integration yields 

A4=-- - - -  (6.1.21) 
z + F  z -  

Here, A+ = 4( y = 0 )  - 4( y = h),  and i,,, is defined by Eq. (6.1.20). As dis- 
cussed earlier, the potential difference between the electrodes is made up of two 
terms. The first term is the usual ohmic drop due to the flow of current through 
the electrolyte whose electrical conductivity varies because of the variation in 
ion concentration across the cell. The second part of the drop, which arises from 
the concentration gradient term, is associated with the presence of the back- 
ground immobile anions in equilibrium. It represents a counteracting force to 
compensate for the gradient in osmotic pressure. 

The total difference in potential between the anode and cathode is 
composed of three parts (Levich 1962). The first part is the potential drop in the 
fluid where charge neutrality is assumed, which is here given by Eq. (6.1.21). 
The second part is the difference in equilibrium potential between the anode and 
cathode, given by the Nernst equation (Eq. 6.1.6). Since at equilibrium the 
concentration difference term across the cell vanishes, this second potential drop 
is equal to A g o .  However, since for the example considered both electrodes are 
copper, we also have A%'' = 0. 

The last part of the total potential difference requires some discussion. 
This part represents an additional potential drop at the electrodes, called the 
concentration overpotential. It is a consequence of current flow which leads to a 
lower ion concentration in the solution at  the cathode and a higher con- 
centration a t  the anode. Now at an electrode there is a change in concentration 
of the ions in solution to the concentration of the adsorbed ions at the surface, a 
change which is here assumed to be discontinuous but which in actuality takes 
place over the thin double layer adjacent to the electrode in which charge 
neutrality does not hold and in which a potential gradient exists. The con- 
centration overpotential is a consequence of the electrochemical reaction, that is, 
the charge transfer reaction, which occurs at  a metal-ion electrode. In physical 
terms, because of the higher concentration at  the anode, in comparison with the 
equilibrium concentration, it is harder to dissolve a metal ion there, and because 
of the decreased concentration at the cathode it is harder to plate ou t  an ion 
there. The value of the concentration overpotential is 
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(6.1.22) 

This formula represents the difference between the logarithm of the anode and 
cathode concentrations, each of which are referenced to the equilibrium value 
c ~ , .  The result derives from the Nernst equation under the assumption that the 
current in the fluid may be considered small in comparison with the equilibrium 
charge transfer rate that takes place a t  the electrodes. 

The potential boundary condition for the electrolytic cell is therefore 

RT c 
V=Acj + -1n _i! 

z+F c, 
(6.1.23) 

where V is the applied voltage. Substituting the solution for the potential 
difference A+, Eq. (6.1.21), and solving for the current density, we find the 
following result defining the current-voltage characteristic: 

i, - 1 - exp[z+z_FV/(z+ - z _ ) R T l  
- _  (6.1.24) 
i,,, 1 + exp[z+z-FV/(z+ - z - ) R T ]  

From the current-voltage characteristic it is seen that the current is 
inversely proportional to the electrode spacing, since i,,, - h-'. At low values of 
FV/RT the current is linear in the applied voltage, and at  sufficiently high values 
it approaches the limiting currcnt exponentially. This behavior is sketched in 
Fig. 6.1.2. The ideal electrolytic cell behavior will be modified with a real 
electrolyte as a consequence of dissociation of the solvent, say water, at  
sufficiently high voltages. This will result in a plateau and then a subsequent 
current increase, as sketched in Fig. 6.1.2. 

The overall cell reaction for water dissociation (electrolysis of water) is a 
"split" one with H+ ions and 0, produced a t  the anode, and OH- ions and H, 
produced at  the cathode 

H 2 0 - + 2 H +  + - 1 O,(g) + 2e- (6.1.25a) 
2 

2H,O + 2e- -+ 2 0 H -  + H,(g) ( 6.1.25 b) 

The cell reaction is the sum of the two electrode reactions. It will take place with 
the current carried by the H+ and OH- ions if the applied voltage exceeds the 
equilibrium potential difference for the cell given by the Nernst equation. In an 
electrolytic cell with an aqueous electrolyte, it is usual to employ inert electrodes 
for which the equilibrium potential is such that water electrolysis takes place for 
the voltages applied rather than metal dissolution. 

The example we have considered is without flow, and, as may be 
recognized from our earlier study of concentration polarization in nonionic 
solutions, the limiting flux (current density in this case) can be increased by 
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7 

Applied voltage, V 

Figure 6.1.2 Current-voltage characteristic for an electrolytic cell ( A g o  = 0). 

having the solution flow parallel to the walls (electrodes). With flow the ions are 
carried with the solution, and the polarization at  the electrodes is thereby 
reduced. We shall consider hydrodynamic effects in the following section in 
connection with electrodialysis. 

6.2 Electrodialysis 

Electrodialysis is a membrane process in which dissolved ions are removed from 
solution through membranes under the driving force of a dc electric field. 
Electrodialysis membranes are ion exchange membranes and are of two types: 
cation exchange membranes that essentially allow only cations to pass through, 
and anion exchange membranes that allow only anions to pass through (Shaffer 
& Mintz 1980). 

In an electrodialysis “stack,” a common form of which is shown schemati- 
cally in Fig. 6.2.1, flat membrane sheets are arranged to form parallel channels. 
The membranes are arranged so that cation exchange membranes and anion 
exchange membranes alternate, with electrodes at each end. The ion-containing 
solution, which for discussion purposes we may take to be a simple salt like 
sodium chloride in water, flows through the channels. When an electric field is 
applied transverse to the membranes, cations such as Na’ pass through the 
cation exchange membranes and anions such as C1- pass through the anion 
exchange membranes. With reference to Fig. 6.2.1, this reduces the salt content 
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Figure 6.2.1 Electrodialysis cell pair. 

in the channel formed by the left pair of membranes, termed the dialysate 
channel, and increases it in the channel formed by the right pair of membranes, 
termed the concentrate channel. 

The salt solution is pumped through the dialysate and concentrate chan- 
nels, with salt removed continuously along the length from the dialysate channel 
and transferred to the concentrate channel. A dialysate and concentrate channel 
with the associated membranes are termed a cell pair. A typical electrodialysis 
stack may have 50 to 300 cell pairs between a single pair of electrodes, and a 
number of stacks may be used in series to achieve the desired level of salt 
removal. 

As the salt content is reduced in the dialysate channels, the fluid conduc- 
tivity decreases. The resulting potential drop for a given current (salt removal) is 
minimized by making the channel spacing small. Typical channel widths are 
about 1 mm with channel lengths of from about 0.25 to 1 m. 

The membranes themselves are essentially ion exchange resins which have 
been made in sheet form. The ion exchange material is an organic polymer in 
which there is a fixed charge of one sign and a mobile charge of the opposite 
sign that is free to move in and out of the polymer matrix when in solution. A 
membrane permeable to cations will contain a high concentration of mobile 
cations relative to the external concentration. A membrane permeable to anions 
will contain a relatively high concentration of mobile anions. It is these mobile 
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ions in the membrane which carry the current. The relative concentrations are 
illustrated schematically in Fig. 6.2.2 for a cation exchange membrane and for 
equal numbers of positive and negative ions (v, = v-) so that c, = c -  (say, 
dissociated NaCl). Typical membrane thicknesses are around 0.5 mm with fixed 
ion concentrations of around 2(21-' x lo3 mol m-3 (2 equiv dm-3), selectivities 
greater than 90% (depending on the solution concentration), and electrical 
conductivities of around 0.5 S m-'. 

As a consequence of the current flow, a gradient in ion concentration will 
be set up in the solution near the membranes. This concentration polarization is 
similar to that discussed in connection with the electrolytic cell. It gives rise to a 
low salt concentration and high electric field near the membranes in the 
dialysate channel and, when the concentration is low enough, to a current 
saturation or limiting current. In practice, as mentioned in the last section, water 
dissociation and the consequent entrance of the hydrogen and hydroxyl ions 
into the process limits this. The value of the limiting current is affected by the 
hydrodynamics. It can be increased by increasing the flow velocity past the 
membrane, thereby increasing the rate of diffusion of salt ions toward the 
membrane surface to replenish those that have been depleted. 

To illustrate the concentration polarization phenomenon, we consider an 
infinitely long electrodialysis cell pair having parallel channels in which the flow 
is fully developed and laminar. The qualitative behavior of the development of 
the salt concentration and potential distributions along the channels of a 
dialysate and concentrate cell pair are shown schematically in Fig. 6.2.3 for the 
case where the inlet salt concentrations are the same in both channels (Probstein 
1972).  

At the point the fluid enters the region where current is allowed to flow, 
the velocity profile is already fully developed and the ion concentration is 
uniform. As a result of the nearly uniform concentration close to the inlet, the 
fluid responds to the applied electric field simply like a medium with constant 
electrical conductivity; that is, there is a linear potential drop in the fluid as well 
as the membranes. 

Concentration of mobile 
cations in membrane 

Concentration of fixed 
anions in membrane 

Concentration of mobile 
anions in membrane 

Figure 6.2.2 Cation exchange membrane. 
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Figure 6.2.3 Development in electrodialysis cell pair of (A) salt concentration, and (B)  
potential distribution. [After Probstein, R.F. 1972. Desalination: Some fluid mechanical 
problems. Trans. ASME J .  Basic Eng. 94, 286-313. With permission.] 

Further downstream, concentration gradients develop adjacent to the 
membranes as a result of the ion loss or gain (depending on the channel), and 
these concentration boundary layers grow in thickness. The ion concentration 
decreases a t  the membrane surfaces in the dialysate channel and increases in the 
concentrate channel. As a result of the large concentration gradients, the 
potential drop in the dialysate channel is larger than that associated with the 
average conductivity in the channel, with the drop being sharpest at  the 
membrane boundaries. In the concentrate channel the opposite situation pre- 
vails. We note also that there is a Donnun potelztiul drop at the fluid-membrane 
boundaries resulting from the concentration discontinuities across the mem- 
branes. The Donnan potential drop has the same origin and form as the 
electrode concentration overpotential. 

Eventually, the diffusion layers fill the channels, and thereafter the ion 
concentration begins to decrease in the center of the dialysate channel and to 
increase in the concentrate channel. At infinite channel lengths the con- 
centrations in the dialysate and concentrate channels would tend to limiting 
values corresponding to the total applied potential drop being taken up by the 
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Donnan potential associated with the concentration discontinuities at the 
membrane interfaces. 

By analogy with velocity profile development in the entrance region of a 
pipe or  channel, the region where the diffusion layers are growing is termed 
developing, as in our earlier discussion of solute concentration development in a 
channel with soluble walls or  in a reverse osmosis channel. As before, the region 
where the diffusion layers have filled the channel is termed developed, although 
the concentration profile continues to alter as long as current flows and salt is 
being redistributed. 

To model the electrodialysis stack, we assume that since there are many 
cells in a stack the behaviors in different pairs of adjacent dialysate and 
concentrate channels are the same. If we neglect the potential drop in the 
electrode cells adjacent to the electrodes as small compared with that in the rest 
of the system, the potential drop across a channel pair is constant and equal to 
the total applied voltage divided by the number of channel pairs. The dialysate 
and concentrate channels are taken to have the same separation 2h  (Fig. 6.2.1). 
Since there is symmetry about the center plane of each channel, we may model 
the electrodialysis cell pair of Fig. 6.2.1 by one half of the dialysate channel and 
one half of the adjacent concentrate channel separated by a membrane, as 
shown in Fig. 6.2.4. For specificity we choose the cation exchange membrane. 
Both types of membranes are assumed to have the same resistances and 
thicknesses and to be perfectly selective. To simplify the problem somewhat 
further, we take the membrane resistance to be small so that the ohmic drop 
within the membranes may be neglected. 

To simplify the equations and form of the boundary conditions, we 

I T x i  I 

___* 
Y 

Flow Flow 

Figure 6.2.4 Electrodialysis cell pair model. 
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assume that the dilute electrolyte consists of one positive and one negative 
charged species with equal numbers of positive and negative ions, 

v, = v- = v (6.2.1) 

and equal diffusion coefficients, 

D ,  = D-  = D (6.2.2) 

These assumptions are introduced simply to minimize the algebra. 
A rectangular Cartesian coordinate system is chosen with orientation as 

shown in Fig. 6.2.4. As in our previous channel flow analyses, the flow is taken 
to be laminar and fully developed with the same mean velocity U in each 
channel. The salt concentration at  the entrance to each channel is assumed 
uniform with value 

c = c o  a t x = O  (6.2.3) 

Finally, the length in the direction of the flow is large with respect to the channel 
half-width. 

The basic equations for this problem have already been set out in Section 
3.4. In particular with 

c ,  = c- = c (6.2.4) 

and with the previously noted assumptions, from Eq. (3.4.14) the equation 
governing the concentration distribution is 

d C  d 2C 
u ( y )  - = D 7 

d x  d y  
(6.2.5) 

Here, M( y) is given by the Poiseuille profile (Eq. 4.2.14). The equation governing 
the potential distribution follows from current continuity (Eq. 3.4.16), which, 
with z ,  = - - z - ,  is 

(6.2.6) 

Note that c is the actual molar ion concentration. As with the electrolytic cell, 
our approach will be to first determine the concentration distribution from Eq. 
(6.2.5) and then express the potential drop in terms of this distribution through 
Eq. (6.2.6). 

The boundary condition on the concentration at the cation exchange 
membrane is defined by the condition i- = 0, which is the same condition that 
applied at  the cathode in the electrolytic cell examined in the last section. For 
the present problem from Eq. (6.1.16), 
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(6.2.7) 
d c  i 
d y  2 z + F  

D - = - -  at y = O  

At the anion exchange membrane the sign of Eq. (6.2.7) is reversed. Finally, the 
condition of symmetry at  the channel centers is 

d c  
- = O  a t y = * h  
dY  

(6.2.8) 

The system comprising the differential equation for the concentration 
distribution (Eq. 6.2.5), and the initial and boundary conditions (Eqs. 6.2.3, 
6.2.7, and 6.2.8) is essentially the same as that for the concentration profile 
development in a reverse osmosis channel treated in Section 4.4. There, i / 2 z + F  
of Eq. (6.2.7) is replaced by u,,,cIu. The current density i is simply Fz+j+, so the 
boundary conditions are indeed essentially the same, whence we may expect the 
solution behavior to be the same. For the present problem, however, the current 
is coupled to the equation for the potential, and it is therefore defined by the 
applied voltage. 

For small distances from the channel entrance ( x i h  -+ 0), the concentration 
layer is developing, and, as with the reverse osmosis problem, the solution is 
self-similar. We therefore choose the same similarity variable as defined by Eq. 
(4.4.18), namely, 

(6.2.9) 

The choice of the reduced streamwise coordinate 5 is somewhat modified from 
Eq. (4.4.16) and is here 

(6.2.10) 

where V is the constant applied voltage drop across the channel half-pair. The 
replacement of the Peclet number u,,,hlD by the dimensionless applied voltage 
drop V "12, where 

(6.2.1 1) 

is readily derived in the same manner as Eq. (4.4.16). 

given in order of magnitude by 
From the convective diffusion equation the diffusion layer thickness is 

(6.2.12) 

where we have set u - 3 U6,ih. Now the ion concentration at  the membrane 
(wall) may be estimated from the boundary condition Eq. (6.2.7), with c, < co, 
as 
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(6.2.13) 

But the current density i is determined from Eq. (6.2.6) as 

V 2F2z:Dc, 
2 h  RT 

i- - (6.2.14) 

Eliminating i and 6, in Eq. (6.2.13) by using the estimates of Eqs. (6.2.12) and 
(6.2.14), we find that 

(6.2.15) 

with 5 defined by Eq. (6.2.10). As with the reverse osmosis problem, this 
parameter measures the extent of the concentration polarization. Note that 
reference here is to the dialysate channel with a positive sign on 

The analysis for the ion concentration distribution now follows exactly as 
in Section 4.4. A function f (v)  is defined as in Eq. (4.4.17), and the resulting 
ordinary differential equation is solved exactly as for the reverse osmosis 
problem. The result for the wall concentration from Eq. (4.4.28) is 

- cw = 1 - 1.53651’3 
CO 

(6.2.16) 

With the ion concentration so determined the current-voltage characteris- 
tic can be obtained by integrating the equation for the potential distribution. 
Again, as in the case of the electrolytic cell, some care must be exercised with 
respect to the boundary conditions. In particular, the total potential drop must 
equal that in the dialysate half-channel, plus that in the concentrate half- 
channel, plus the Donnan potential drop across the membrane. The Donnan 
potential drop arises from the discontinuities in concentration at  the boundaries 
of the membranes (in this case, the cation exchange membrane for the half-cell 
as considered). The origin and expression for the Donnan potential are the same 
as for the electrode concentration overpotential. For the cation exchange 
membrane the Donnan potential drop is 

It follows that the applied voltage V is therefore 

(6.2.17) 

(6.2.18) 

where A+ is the potential drop in the fluid. This drop is given by 
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(6.2.19) 

which is obtained from integrating Eq. (6.2.6). 

out the quadratures in Eq. (6.2.19), we find, to consistent order, that 
Employing the solution for the ion concentration distribution and carrying 

(6.2.20) 

where 

(6.2.21) 
. _.. ih , ” = 

2Fz+ Dc, 

The solution as given by Eqs. (6.2.16) and (6.2.20) requires that both 
5 ” 3 / V i f  be small. 

large the current approaches the limiting value 

and 

I t  can be seen that there are two limits: (a) &--+ 0 and (b) V“.+ m. For V‘> 

(6.2.22) 

and the point at  which the concentration at  the membrane becomes zero is 

t,,, = ( 1.536)-3 = 0.276 (6.2.23) 

Both cases (a) and (b) correspond to x / h  small. However, whereas in case (a) the 
similarity solution covers only a small part of the region of interest, in case (b) 
the solution is valid up to (li,n (Solan & Winograd 1969). 

6.3 Ion Exchange 

Ion exchange is the reversible exchange of ions in a solution with an equivalent 
amount of ions of the same charge in a solid phase or ion exchanger. There is no 
exchange of ions of the opposite charge between the solution and the exchanger. 
The solid ion exchangers may be spherical or irregular granules, are relatively 
insoluble in water, contain charges fixed within their solid structure and mobile 
charges which can be exchanged, and are always in a state of electroneutrality. 
They are normally highly porous synthetic polymeric cation and anion exchange 
resins. In the last section the ion exchange resin was introduced as the basic 
element of the electrodialysis membrane. We recall that in a cation exchanger 
the mobile ions are positive ions (cations), and in an anion exchanger they are 
negative ions (anions). 

A principal use of the process of ion exchange is to remove or concentrate 
ions in solution, usually inorganic ions. An example is the softening of water 
which involves the removal of calcium ions, which form an insoluble salt with 
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soap (water hardness), and replacing them with innocuous ions such as sodium. 
Another example is the deionization of water in which both cations and anions 
are exchanged, usually by employing a cation exchange resin saturated with 
hydrogen ions and an anion exchange resin saturated with hydroxyl ions. Ion 
exchange also has many preparative and analytical uses, one example of which 
is ion exchange chromatography in which charged molecules are adsorbed by 
the exchanger and then eluted by changing the ionic environment. This is 
analogous to the size exclusion chromatography discussed in Section 4.7. 
Because we have already illustrated the chromatographic separation principle, 
our treatment of ion exchange will focus on its use for the removal (con- 
centration) of some “contaminant” ion and its replacement by an “innocuous” 
ion. 

The conventional ion exchange process for the softening of water may be 
represented by the chemical equation 

2Na’R- + Ca2’CI, *Ca2’R, + 2Na’Cl- (6.3.1) 

or  simply 
- - 

2Na’ + Ca2+ * Ca2+ + 2Na’ (6.3.2) 

Here, the unbarred quantities are ions in solution and the barred quantities are 
ions in the resin phase, with R denoting the negative immobile ions. During 
calcium removal the reaction is to the right. To regenerate “used up” resin, a 
concentrated salt solution with at  least an equivalent amount of sodium must be 
provided to replace the calcium in the resin. In this case the reaction is to the 
left. As mentioned, the exchange conserves charge and maintains bulk electrical 
neutrality within the solution as well as within the exchanger. An electric double 
layer in which neutrality is not maintained forms around the exchanger 
particles, but it is small and will be neglected here. 

More generally, if A and B are the exchangeable ions, the reversible 
exchange reaction may be represented by the equation 

A + B ~ B + A  (6.3.3) 

where the ion exchanger is initially in the A form and the counterion in solution 
is B. Ion exchange occurs, and the ion A in the exchanger is partially replaced by 
B. At equilibrium, both the ion exchanger and the solution contain both 
competing ion species A and B. 

The concentration ratio of the two competing species in the ion exchanger 
is usually different from that in the solution, with the ion exchanger selecting 
one species in preference to the other. Ion exchange equilibrium is characterized 
by the ion exchange isotherm, which shows at  a given temperature the 
equilibrium ionic composition of the ion exchanger as a function of the ionic 
composition and concentration of the exterior solution. Usually the equivalent 
ionic fraction of the counterion A (or B) in the ion exchanger is plotted as a 
function of the equivalent ionic fraction of A (or B) in the solution for a given 
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total concentration of the external solution, different curves corresponding to 
different concentrations (Helfferich 1962). 

The equivalent ionic fraction of A in solution is 

(6.3.4) 

where z,c, is the concentration in equiv m-3 (charge per unit volume in units of 
F ) .  We recall from Section 2.5 that equivalents are not recognized in SI. 
However, because equivalents are used in the ion exchange literature and 
because we are concerned principally with equivalent ionic fractions, which are 
dimensionless, we retain the usage here. The equivalent ionic fraction may be 
interpreted as the ratio of the number of electronic charges contributed by A to 
the total number of electronic charges contributed by the exchangeable ion. The 
corresponding equivalent ionic fraction of A in the exchanger is 

(6.3.5) 

We may also write 

XB = 1 - X A  (6.3.6) 

XB = 1 - XA (6.3.7) 

Note that the total concentration of the exterior solution in equiv m - 3  is 

where here and in what follows C is used to denote an equivalent concentration. 
The capacity of the ion exchanger is correspondingly 

- 
c = Z A c ,  + Z B c ,  (6.3.9) 

Since the nonexchangeable neutralizing ions cannot move from one phase to 
another, then, by charge neutrality during exchange, C and c must be constant 
for a given solution and given exchanger. 

In Fig. 6.3.1 are sketched ion exchange equilibrium isotherms for a given 
exchanger and different external solution concentrations. In a hypothetical 
system in which the ion exchanger shows no preference for A or B, the 
equivalent ionic fractions in the ion exchanger are the same as those in the 
solution and the isotherm is linear, as shown by the dashed diagonal line in Fig. 
6.3.1. If the exchange is favorable for A-that is, there is a preference for the 
exchanger to absorb A-the isotherm is concave downward and lies above the 
diagonal. If the exchange is unfavorable for A-that is, there is a preference for 
the exchanger to absorb B-the isotherm is concave upward and lies below the 
diagonal. 
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0 0.5 1 .o 
Equivalent ionic fraction of A in solution, x A  

Figure 6.3.1 Ion exchange equilibrium isotherms. 

The origin and end point of any isotherm must lie at  (0,O) and (1, l),  
respectively, since at  equilibrium the absence of one of the ions in solution 
requires the absence of this ion in the exchanger. It follows that at (0,O) there is 
no  species A in solution and therefore none in the resin. At (1,l) there is no 
species B in solution and therefore none in the resin. In general, the preference 
of a given exchanger for a specific ion increases with dilution, as indicated by 
the isotherm behavior sketched. 

We may illustrate the use of the isotherm by asking what the equilibrium 
exchanger concentrations CA and CB would be, given zA, z,, cA,  and c, for the 
solution. From the formulas xA = zAcA/C and C = zAcA + z,cB, the quantities 
xA and C are calculated, whence XA is determined from the isotherm and XB 
from the definition XB = 1 - XA. Finally, from 

- - 
z,C, = x,c z,c, = x,c (6.3.10) 

and the relation c = zACA + zBCB, two equations are obtained for CA and CB. 
Normally, the ion exchange process is carried out in columnar operation 

with the fluid from which the contaminant ion is to be removed introduced at  
the top of the column and allowed to flow downward under gravity through a 
packed bed of exchanger. The exchanger is usually in the form of fine polymeric 
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resin beads, typically around 0.5 mm in diameter (the range is from about 0.3 to 
1.2 nim). In Fig. 6.3.2 the column operation is illustrated schematically for the 
exchangeable ions A and B, where the resin is assumed initially to be entirely in 
the A form and the solution initially to contain only B ions. 

When the solution is first fed to the column, it will exchange all its ions B 
for A in a narrow zone at  the top of the bed. The solution with A ions passes 
through the lower part of the column without further changing its composition. 
As the flow continues, the top layers of the bed are exposed to fresh B-ion 
solution. Eventually the resin beads are completely converted to B form and 
become exhausted. The boundary of the zone in which the ion exchange takes 
place is displaced downstream while changing shape, eventually reaching the 
bottom of the column, at which time the B ions appear in the effluent. This is 
termed the breakthrough of B. 

The degree of column utilization before breakthrough requires a knowl- 
edge of the shape of the exchange zone boundary or  exchange zone front at the 
time of breakthrough. Approximately, 

capacity used A,,(L) .=1--- ’ = capacity available L 
(6.3.1 1) 

where L is the bed length and A,, is the length of the exchange zone, which is a 
function of L. For the case considered, with the resin initially in pure A form 
and the solution containing only B ions, from conservation of species the 
volume of water treated prior to breakthrough V, is given by 

cv= p c v  (6.3.12) 

- 
X8 
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--t-1 0 1 0 1 0 1 - 

_ _ _ _  ------ 
Exchange 
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0 . 0 0  

I 
Product 

t = O  

Partly 
unused 
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t t2 

- Breakthrough 
0 Resin in A form X + B - B + A  

0 Resin in B form 

Figure 6.3.2 Ion exchange column operation. 
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Here, v is the resin volume and c is its capacity. Regeneration of the exhausted 
resin, by passing a regenerant fluid through the column, is necessary to bring the 
resin back to its original composition. 

The shape of the isotherm and whether the equilibrium is favorable or 
unfavorable alter the shape of the S-shaped exchange zone front sketched in Fig. 
6.3.2. An important problem in ion exchange column operations, both for 
contaminant ion removal and elution, is the determination of the shape of the 
front as a function of the isotherm shape and distance along the column. The 
exchange zone front represents a moving continuity wave or  kinematic wave 
across which there is a change in ion concentration. This wave is analogous to 
the kinematic waves and shocks studied in connection with gravity sedi- 
mentation and centrifugal sedimentation. 

In the particular case of an infinitely fast exchange rate with diffusional 
effects neglected, the exchange zone front is discontinuous; that is, it is a 
kinematic shock in the sense of Section 5.4 with, for example, the ionic fraction 
x B  changing discontinuously across the front, which moves downward with 
speed u,, (Fig. 6.3.3).  

The mean interstitial speed of the fluid is 

(6.3.13) 

where Q =volume flow rate 
A = column cross-sectional area 
E = void fraction 
U = superficial speed of the fluid 

Here, the solute is assumed to be excluded by the resin. The front speed can be 
related to the fluid speed by 

Feed 
1 

Resin in A form 

0 Resin in B form 

Contact 
surface 

1 
.... .... 
0 . 0 .  

I 
Product 

species conservation, assuming that the cross- 

Exchange 
zone front 

I 
Exchange 
zone front 

I 1  

Figure 6.3.3 Discontinuous exchange zone front. 
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sectional area available to the fluid is & A  and that to the resin is (1 - & ) A  (cf. 
Eq. 4.7.5). 

With respect to a coordinate system moving down with the front speed 
uex,  the solution moves down with speed U ,  - uex and the resin moves up with 
speed uex.  In this reference frame the flow is steady, and the ion transfer down 
by the solution must equal the ion transfer up by the resin, whence 

EC( u, - u e x )  = (1 - 8 )  cu,, (6.3.14) 

or 

U 
& + (1 - &)C/C u,, = (6.3.15) 

with U = E U ,  the superficial velocity. 
In the more general case where the exchange front is not discontinuous but 

diffusion is neglected, from Eq. (3.3.18) we may write the species conservation 
relation as 

& -+u,-- JCB) - - R , = - ( l - E ) -  d c, 
( at  d t  

(6.3.16) 

Here, 5 is the coordinate in the direction of flow, and R ,  is the rate at  which B 
ions are removed from solution and taken up by the resin. The factor F on the 
left side of the equation characterizes the average portion of the fixed control 
surface through which the fluid flows because of the presence of the resin, and 
the factor 1 - E on the right side characterizes the volume of resin contributing 
to the decrease in B ions from adsorption. Although Eq. (6.3.16) is written here 
and in the adsorption literature in a cavalier fashion, it should be recognized 
that there are many subtleties involved which the interested reader may wish to 
explore. 

The function 

c, = C,(C,, C) (6.3.17) 

defined by the isotherm specifies the equilibrium production rate R,. O n  
applying the chain rule and setting aC/d t  = 0, we may write 

(6.3.18) 

Replacing aC,/dt in the conservation relation (Eq. 6.3.16) with the above 
expression leads to 

(- a + U,ft -&3 d = 0 
d t  

(6.3.19) 

where 
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(6.3.20) 

The speed ueff is the speed with which a point with ionic fraction xB in solution 
moves. In general, Eq. (6.3.19) is a nonlinear hyperbolic equation possessing 
real characteristic solutions. Note that the characteristic direction is 

(6.3.21) 

From Eq. (6.3.20) it can be seen how favorable and unfavorable equilibria 
result in different exchange front patterns. With reference to Fig. 6.3.4 and 
given an initial S-shaped front near 5 = 0 and two points on the front a and b, i f  
the equilibrium is favorable, then (d%,/dx,), > (d2 , /dx , ) , .  Thus, from Eq. 
(6.3.20), uzff < This means that point b catches up with point a and the 
front tends to steepen. Physically, any ions A behind the front are displaced 
preferentially by B ions and catch up with the front. The B ions ahead of the 
front are preferentially retained and have opposite behavior to the A ions. In 
this case, the front is said to be self-sharpening (Helfferich 1962).  At large 
distances down the column the front will approach the discontinuous form of 
Fig. 6.3.3 with a speed given by Eq. (6.3.15), assuming no diffusion and an 
infinite exchange rate. In a 5-t diagram the characteristics would be seen to 
coalesce to form a discontinuity. 

If the isotherm is linear, d2, /dx ,  = 1; that is, there is no preference for A 
or  B, and the front propagates unchanged. Finally, i f  the isotherm is unfavor- 
able, (d?,/dx,), < (d?,/dx,), and uZff > ueff. The situation is opposite to that 
described above. Here the A ions behind the front are preferentially retained and 
fall further behind. The B ions ahead of the front have the opposite behavior. 
This type of front spreads out and is termed nonsharpening. It is the form 
characteristic of most elution techniques. Here, in a 5-t diagram the characteris- 
tics would appear as a spreading fan emanating from the origin. 

b 

I 

5 

1 -  
T = constant 

0 

x0 
0 

Figure 6.3.4 Effect of equilibrium isotherm shape on shape of exchange zone front. 
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From the arguments given it can be seen that at  large distances the width 
of the front for the favorable isotherm is governed by diffusion-dispersion 
and/or  the reaction rate (Helfferich 1962, Liberti & Helfferich 1983). On the 
other hand, for unfavorable equilibria the front spreads indefinitely, and at  large 
distances its width and shape are governed essentially by the isotherm shape 
alone, diffusion and reaction rate having little effect. 

6.4 The Electric Double Layer and Electrokinetic 
Phenomena 

In the last several sections we have discussed the effect of charge transfer in 
neutral electrolytes (the electrode, electrodialysis membrane, and ion exchange 
resin particles). Generally, most substances will acquire a surface electric charge 
when brought into contact with an aqueous (polar) medium. Some of the 
charging mechanisms include ionization, ion adsorption, and ion dissolution. 
The effect of any charged surface in an electrolyte solution will be to influence 
the distribution of nearby ions in the solution. Ions of opposite charge to that of 
the surface (counterions) are attracted toward the surface while ions of like 
charge (coions) are repelled from the surface (Fig. 6.4.1). This attraction and 

t 

u. k Counterions 

t 

Distance, x Distance, x 

Figure 6.4.1 The diffuse electric double layer. 
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repulsion, when combined with the mixing tendency resulting from the random 
thermal motion of the ions, leads to the formation of an electric double layer. 
The electric double layer is a region close to the charged surface in which there 
is an excess of counterions over coions to neutralize the surface charge, and 
these ions are distributed in a “diffuse” manner. Evidently there is no charge 
neutrality within the double layer because the number of counterions will be 
large compared with the number of coions. 

We may observe that if there were no thermal motion there would be just 
as many counterions in the electric double layer as needed to balance the charge 
on the surface. This is termed perfect shielding, since all of the other ions are 
shielded from the surface charge. However, because of the finite temperature 
and associated random thermal motion of the ions, those ions at the edge of the 
“cloud” where the electric field is weak have enough thermal energy to escape 
from the electrostatic potential well. Therefore the “edge” of the double layer is 
at a position where the potential energy is approximately equal to the thermal 
energy of the counterions (RTI2 per mole per degree of freedom), and the 
shielding is not complete. 

We may estimate the approximate thickness of the double layer in the 
one-dimensional picture of Fig. 6.4.1. There, the electric field is taken to be 
parallel to the x axis, that is, everywhere perpendicular to the plane charged 
surface. We consider a simple fully dissociated symmetrical salt in solution for 
which the number of positive and negative ions are equal, so 

z ,  = - z -  = z (6.4.1) 

For specificity the surface is taken to be positively charged as in Fig. 6.4.1. 
Let us first make a rough estimate of the thickness by assuming that there 

are no positive ions (coions) present. Then the electric potential from the 
Poisson equation (Eqs. 3.4.5 and 3.4.7) is defined by 

d2@ Fzc 
dx2 E 

-- -- (6.4.2) 

where c is taken to be the average molar negative ion (counterion) con- 
centration. The electrical potential energy per mole of negative ion is 

W =  -Fz+ (6.4.3) 

The change in W across a plane layer of width x is obtained by integrating Eq. 
(6.4.2): 

F 2z2cx2 
2 E  

A W = -  ~ (6.4.4) 

This result assumes that the electric field vanishes on one side of the plane layer. 
If we assume only planar translational motion, the value of x for which the 
absolute value of A W equals R T  is 
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(6.4.5) 

The quantity A, is termed the Debye shielding distance or, more frequently, the 
Debye length. 

For an aqueous solution of a symmetrical electrolyte at  25"C, 

9.61 x 
AD = 

( Z2C)  ' 'z (6.4.6) 

with A, in meters and c in mol m-3. For a univalent electrolyte the Debye length 
is thus about 1 nm for a concentration of lo2 molm-3 and 1 0 n m  for 
1 moI m-3. 

From Eq. (6.4.5) or (6.4.6) it can be seen that A, decreases inversely as the 
square root of the concentration. Physically this is a result of the fact that there 
are more counterions per unit of depth. The Debye length also decreases with 
increasing valency because fewer ions are required to equilibrate the surface 
charge. More importantly, A, increases as the square root of RT. That is, 
without thermal agitation the double layer would collapse to an infinitely thin 
layer. 

From the above considerations we can now define what is meant by 
electrically neutral solutions. If the dimensions of the system L are much larger 
than A,, then whenever local charge concentrations arise or external potentials 
are introduced into the solution they are shielded out in a distance short 
compared with L,  leaving the bulk of the solution free of large electric potentials 
or fields. Based on a Debye length of 1 to 10nm,  the assumption of electrical 
neutrality is generally justified for the problems so far considered. However, as 
we shall discuss in the next section, in the case of very small charged micro- 
scopic capillaries, such as are characteristic of membranes and finely porous 
media, the double layer is central to the calculation of the solute and ion fluxes. 

A more detailed calculation than that given above of the one-dimensional 
diffuse double layer recognizes that the concentration of ions in the sheath has 
the Boltzmann distribution 

(6.4.7) 

where the concentration far from the surface c+ co as 4 + 0. The charge 
density from p F  = F C z,c, is therefore 

p E  = rFc,[exp( s) - exp( s)] 
= -2Fzc, s i n h ( 2 )  

whence from Poisson's equation in place of Eq. (6.4.2) we have 

d'4 2zFco . 
dx2 - E smh( 

(6.4.8) 

(6.4.9) 
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The above form of the Poisson equation can be integrated explicitly. 
However, note that for small potentials zF4 4 RT (recall that RTIF = 25.7 mV 
a t  25°C) we may expand sinh(zF4IRT) with the result 

- = -  d 2 4  4 
dx2 A h  

(6.4.10) 

This approximation is termed the Debye-Huckel approximation. Integrating 
Eq. (6.4.10) subject to the conditions that 4 = 4w at x = O  and 
4 = 0, and dc$/dx = 0 as x + m  gives 

4 = C w e x p ( -  (6.4.1 1) 

The Debye length is thus seen to be the l l e  decay distance for the potential and 
electric field at  low potentials. Close to the charged surface where the potential 
is relatively high and the Debye-Huckel approximation inapplicable, the po- 
tential decreases faster than the exponential fall-off indicated. 

The potential 4u can be related to the charge density at  the surface by 
equating the surface charge with the net space charge in the diffuse part of the 
double layer. 

The treatment given above of the diffuse double layer is based on the 
assumption that the ions in the electrolyte are treated as point charges. The ions 
are, however, of finite size, and this limits the inner boundary of the diffuse part 
of the double layer, since the center of an ion can only approach the surface to 
within its hydrated radius without becoming specifically adsorbed (Fig. 6.4.2). 
To take this effect into account, we introduce an inner part of the double layer 
next to the surface, the outer boundary of which is approximately a hydrated 
ion radius from the surface. This inner layer is called the Stern layer, and the 
plane separating the inner layer and outer diffuse layer is called the Stern plane 
(Fig. 6.4.2). As indicated in Fig. 6.4.2, the potential at  this plane is close to the 
electrokinetic potential or zeta (4‘) potential, which is defined as the potential at  
the shear surface between the charge surface and the electrolyte solution. The 
shear surface itself is somewhat arbitrary but characterized as the plane at  which 
the mobile portion of the diffuse layer can “slip” or flow past the charged 
surface. 

The above discussion leads to what we mean by electrokinetic phenomena, 
which is the term applied to four phenomena that arise when the mobile portion 
of the diffuse double layer and an external electric field interact in the viscous 
shear layer near the charged surface. With reference to Fig. 6.4.3, if an electric 
field is applied tangentially along a charged surface then the electric field will 
exert a force on the charge in the diffuse layer. This layer is part of the 
electrolyte solution, and the migration of the mobile ions will carry the solvent 
with them and cause it to flow. On the other hand, an electric field is created if 
the charged surface and diffuse part of the double layer are made to move 
relative to each other. In the example of Fig. 6.4.3 the value of the velocity U 
outside the diffuse layer is a constant, and for a sufficiently thin diffuse layer U 
may be regarded as a “slip velocity” relative to the surface. As shown in Fig. 
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Figure 6.4.2 Structure of electric double layer with inner Stern layer. [After Shaw, D.J. 
1980. Introduction to Colloid and Surface Chemistry, 3rd edn. London: Butterworths. 
With permission.] 

Figure 6.4.3 Flow produced by electric field acting o n  diffuse double layer. 



Electroosmosis 195 

6.4.3, the true velocity of the fluid at  the surface must be zero from the viscous 
flow condition of no slip. 

The four electrokinetic phenomena following the description of Shaw 
(1980) are 

1. Electrophoresis-the movement of a charged surface plus attached materi- 
al (i,e., dissolved or suspended material) relative to stationary liquid by an 
applied electric field. 
Electroosmosis-the movement of liquid relative to a stationary charged 
surface (e.g., a capillary or porous plug) by an  applied electric field (i.e., 
the complement of electrophoresis). The pressure necessary to counterbal- 
ance electroosmotic flow is termed the electroosmotic pressure. 
Streaming potential-the electric field created when liquid is made to flow 
along a stationary charged surface (i.e., the opposite of electroosmosis). 
Sedimentation potelztial-the electric field created when charged particles 
move relative to stationary liquid (i.e., the opposite of electrophoresis). 

2. 

3 .  

4. 

Both electroosmosis and streaming potential relate to the motion of 
electrolyte solutions and are therefore considered in the following section. 
However, we shall reserve the detailed discussion of streaming potential for the 
next chapter in connection with the treatment of sedimentation potential, which 
together with electrophoresis deals with the motion of dissolved or suspended 
charged particles. 

6.5 Electroosmosis 

The discovery of electrokinetic phenomena may be credited to F.F. Reuss, whose 
experiments on electroosmosis and electrophoresis were described in 1809 in the 
Proceedings of the Imperial Society of Naturalists of Moscow. Reuss demon- 
strated that under the influence of an applied electric field water migrated 
through porous clay diaphragms toward the cathode. This is understood today 
to be a consequence of the fact, illustrated schematically in Fig. 6.5.1, that clay, 
sand, and other mineral particles usually carry negative surface charges when in 
contact with water; the water normally containing small quantities of disso- 
ciated salts. As described in the last section, the charged surface will attract 
positive ions present in the water and repel negative ions. The positive ions will 
therefore predominate in the Debye sheath next to the charged surface, so 
application of an external electric field results in a net migration toward the 
cathode of ions in the surface water layer. Due to viscous drag, the water in the 
pores is drawn by the ions and therefore flows through the porous medium. 

Electroosmosis has been used in a variety of applications, including the 
dewatering of soils for construction purposes and the dewatering of mine 
tailings and waste sludges. It has also been used to characterize and design the 
salt rejection properties of reverse osmosis membranes and to help understand 
the behavior of biological membranes. Electroosmosis is also being investigated 
as a means of removing contaminants from soils. 
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Figure 6.5.1 Electroosmotic flow of water in a porous charged medium. 

To analyze the flow through a porous medium, we can, as before, model 
the medium as a collection of parallel cylindrical microcapillaries. As noted in 
Section 4.7, the actual sinuous nature of the capillaries may be accounted for by 
the introduction of an empirical tortuosity factor. The results for electroosmotic 
flow through a capillary are then readily carried over to the porous medium by 
using Darcy’s law (Eq. 4.7.7) and, for example, the Kozeny-Carman permeabili- 
ty  (Eq. 4.7.16). 

Let us estimate the electroosmotic velocity produced in a fine circular 
capillary by a uniform electric field applied along the axis as in Fig. 6.5.1. If the 
surface is assumed to be negatively charged, then the flow will be in the 
direction of the cathode, as shown. With the electric body force per unit volume 
given by f, = pEE, the momentum equation (Eq. 3.1.8) may be written 

Du 
D t  

p - = V . O + p g + p , E  (6.5.1) 

Neglecting gravitational forces and supposing the flow to be an inertia free 
capillary flow, with no pressure gradient Eq. (6.5.1) simply reduces to a balance 
between viscous and electrical forces: 

pv2u = -PEE (6.5.2) 

With x the coordinate directed along the axis toward the cathode and u the 
velocity component in that direction, we have for a long capillary that the 
derivatives of u with respect to x are zero and u is a function only of the 
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transverse coordinate. If, in addition, the diffuse layer thickness A, is small 
compared with the tube radius a, then the curvature terms can be neglected and 
Eq. (6 .5 .2 )  reduces to the one-dimensional form appropriate to a long plane 
channel or infinite plane surface: 

(6.5.3) 

Here, y is the Cartesian coordinate normal to x with origin at the lower channel 
wall (or plate surface) and directed into the flow. The component of the electric 
field E x  is parallel to the surface in the positive x direction. Poisson’s equation 
has been used to eliminate the charge density pE. 

Integrating Eq. (6 .5 .3)  gives 

(6.5.4) 

where at  the edge of the diffuse layer ( y-+ w) we have set d u l d y  = d 4 / d y  = 0. 
Integrating once more and setting 4 = (the zeta potential) at  u = 0, we find 

(6.5.5) 

This formula for the electroosmotic velocity past a plane charged surface is 
known as the Helmholtz-Smoluchowski equation. Note that within this picture, 
where the double layer thickness is very small compared with the characteristic 
length, say alA, % 100, the fluid moves as in plug flow. Thus the velocity “slips” 
at  the wall; that is, it goes from U to zero discontinuously. For a finite-thickness 
diffuse layer the actual velocity profile has a behavior similar to that shown in 
Fig. 6.5.1, where the velocity drops continuously across the layer to zero at  the 
wall. The constant electroosmotic velocity therefore represents the velocity a t  
the “edge” of the diffuse layer. A typical zeta potential is about 0.1 V. Thus for 
E x  = lo3 V m-’, with viscosity that of water, the electroosmotic velocity U - 
1 0 - ~  m s-’, a very small value. 

We observe here that in a capillary the volume flow rate due to a fixed 
pressure gradient is proportional to a4 ( 7ra4/8p.(dp/dx) for a circular capillary). 
The electroosmotic flow rate is proportional to U multiplied by the cross- 
sectional area *a2. Therefore, the ratio of electroosmotic to hydraulic flow rate 
will be proportional to a-2. Thus, for example, if we employ a capillary model 
for a porous medium, it is evident that as the average pore size decreases 
electroosmosis will become increasingly effective in driving a flow through the 
medium, compared with pressure, provided A,la << 1. 

We next calculate how the electroosmotic flow and potential change in a 
long capillary for different ratios of Debye length to radius. We shall allow for 
pressure gradients, but the mean velocity and tube radius are assumed suffi- 
ciently small that inertia effects can be neglected. The dilute electrolyte solution 
in the capillary is taken to be binary. 
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Under the assumptions noted, the momentum equation reduces to 

0 = -vp + pV2u - F(z+c+ + z_c_)V$ (6.5.6) 

where E has been replaced by -V$, and the electric charge density has been 
written in terms of the ion concentration, using pE = F C z,c,. To simplify the 
calculation, we assume an ideal solution of a fully dissociated symmetrical salt 
so that z+ = - z _  = z. For the axially symmetric circular capillary we adopt a 
cylindrical coordinate system ( x ,  Y) with x positive in the direction of flow and Y 

the radial coordinate with origin at  the axis of symmetry: 

(6.5.7) 

To define the interaction between the electric field and ion concentration, 
we invoke Poisson's equation V2+ = - p E / e .  For a capillary of length L large 
compared with its radius a, the term d 2 4 / d x 2  may be neglected, to give 

1 d d 4  F Z  
( c ,  - c - )  Y -  = - -  - -  

Y d Y  i d Y )  E 
(6.5.8) 

In other words, at  any small segment of the capillary the ion concentrations are 
in a local quasi equilibrium determined solely by the radial variation in 4. 

Because of the behavior indicated, it is convenient to divide the potential 
into two parts, 

and write Poisson's equation as 

1 d d* Fz _ _  y - = - - (c+ - c - )  
Y dY i d l )  E 

(6.5.10) 

Since there is no  radial flux of ions or radial flow, we can integrate the radial 
component of the Nernst-Planck equations for the ion fluxes and obtain the 
Boltzmann distribution of Eq. (6.4.7): 

c , ( x ,  Y) = co(x)  exp ( 7 - 3 (6.5.11) 

Here, we have set c: = c! = co an approximation that we show is generally 
justified even when the Debye length is not small, a condition for which the bulk 
of the solution is electrically neutral. 

Recasting the right side of Eq. (6.5.10) in the same manner as Eq. (6.4.8), 
we have 

(6.S. 12) 
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where Y "  = rta,  A '' = A,/a, and I) *- = zF@/RT. The boundary conditions from 
symmetry are that 

= O  
d r "  

( 6.5.13 a) 

and, at the surface, 

In writing the condition at the surface, we assume that the solid wall is charged 
and that its electrical nature affects the electroosmosis only through an effective 
surface potential, which we identify with the 5 potential. 

Equation (6.5.12), subject to the boundary conditions indicated, can be 
solved analytically only under limiting conditions on the Debye length described 
below. In general, it must be solved numerically. Figure 6.5.2 gives numerical 
solutions obtained by Gross & Osterle (1968) for a constant surface potential 
I/J: = 5 * = 2.79 for various values of the Debye length ratio A ". It can be seen 
that for A 'i < 0.1 the potential is zero over most of the capillary cross section, 
whereas for A '- > 10 the potential is nearly constant over the cross section. 

3.0 

I I A * =  10 

0 1 .o 
r* = r/a 

Figure 6.5.2 Dimensionless potential distribution across a cylindrical capillary for 
different values of the Debye length ratio A '' and a constant surface potential $2 = 5 ''. = 

2.79 (after Gross & Osterle 1968). 
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For the limiting case of small Debye length ratio, shown schematically in 
Fig. 6.5.3A, t,b = 0 at the center and the solution is electrically neutral there, SO 

the approximation c! = c! = co employed in Eq. (6.5.12) is, in this case, exact. 
Moreover, 

a@ - 
d X  

For the limiting case of large 
within the double layer. If 1 and 4 

= constant (6.5.14) 

Debye length, the entire capillary (pore) is 
designate locations in the external solution 

just outside of the double layer and 2 and 3 designate locations inside the pore 
entrance, then at equilibrium with no flow ( M  = 0 )  and no flux ( j :  = O )  
t,bl = q4 = 0 and $2 = $3 = 5. Hence, from the Boltzmann distribution, 

(6.5.15) 

But this is exactly the Donnan potential, which was written down without proof 
as Eq. (6.2.17) in connection with the electrodialysis analysis. At small Peclet 
number based on A D ,  that is, 

4 1  PeAD = - UAD 
D 

(6.5.16) 

diffusion and electromigration dominate the ion fluxes at  the pore entrance and 
Eq. (6.5.15) is still approximately true. Therefore, regardless of the magnitude 
of A *, the approximation of setting c?+ = cy = co is justified (Liang 1976). 

To obtain the velocity distribution and volume flow rate, we can eliminate 
Fz(c+ - c - )  between the Poisson equation (Eq. 6.5.10) and the momentum 
equation (Eq. 6.5.7) to give 

(6.5.17) 

(4 (B) 

Figure 6.5.3 Debye layer location in a cylindrical pore: (A) A small; (B)  A large. 
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This equation can be integrated subject to the electrokinetic and flow boundary 
conditions 

at  r = O  - = 0  d U  - = o  a* 
d r  d r  

(6.5.18a) 

u = 0  $ = {  a t r = a  (6.5.18b) 

The result is 

E ( $  - 5 )  d @  r 2  - a’ dp U ( Y )  = - -+-- 
p dx 4 p  dx (6.5.19) 

From the velocity profile the volume flow rate is obtained by integrating across 
the capillary cross section to get 

(6 .5 .20 )  

One limit for which an analytic solution is readily obtained is that for 
small Debye length, since here @ = 0 over most of the capillary cross section. 
Therefore, i t  is necessary to solve for @ only near the pore wall, where 
Y - a 4 A,. That is, we can neglect the curvature effect, and the equation for 4 
is exactly the same as that for 4 in the one-dimensional problem of the last 
section (Eq. 6.4.9):  

(6 .5 .21)  

Here, y :’ = y/AD. 
With the Debye-Huckel linearization the solution is simply 

Substituting this result into the general expressions for velocity and volume flow 
rate, we obtain (Liang 1976) 

u =  ; ( 1  - e  

For a thin diffuse layer, that is, for alA,-+w, 

r 2  - a 2  dp 
4p dx 

7ra4 dp 
8p dx 

____ 

_ _ _ _  

(6 .5 .23)  

(6 .5 .24 )  

the expression for the electro- 
osmotic velocity reduces identically to the Helmholtz-Smoluchowski equation 
(Eq. 6 .5 .5 )  for zero pressure gradient. 

Another limit for which an analytic solution is readily obtained is that of 
large Debye length. In this case the ion concentrations are uniform across the 
pore and are given by the Boltzmann distribution of Eq. (6 .5 .15);  that is, 
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(6.5.25) 

The result for u is then obtained simply by integrating the momentum equation 
(Eq. 6.5.7) subject to the no-slip boundary condition u = 0 a t  r = a and the 
symmetry condition d u l d r  = 0 a t  r = 0. Note that the Poisson equation is not 
used here; it is replaced by the condition of equilibrium, that is, overall charge 
neutrality. Carrying out the integration, we get 

p - 2zFc,@ sinh 
4p  dx 

n u 4  d 
Q = -- 8p - dx ( p  - 2zFc,@ sinh( g)) 

(6.5.26) 

(6.5.27) 

We had earlier observed, as may be seen from Eq. (6.5.24), that the ratio 
of the electroosmotic flow to hydraulic flow for A,la ==s 1 goes as a-9 It may be 
seen from Eq. (6.5.27) that for A,la + 1 this ratio is independent of the 
capillary radius, so in terms of flow rates achievable there is no particular 
advantage in using an electric field rather than a pressure gradient. 

The application of the above results for a capillary to a porous medium is 
straightforward and may be found in Liang (1976), Jacazio et al. (1972), and 
Shapiro & Probstein (1993). Although we have not presented it here, the 
current density can also be calculated by using Eq. (3.4.3), and the total current 
can be obtained by integrating across the capillary cross section. 

The simple capillary model presented has also been used to model salt 
rejection in flow through charged porous materials. The physical mechanism of 
the salt rejection is just that the surface charge gives rise to a potential field that 
extends a distance approximately equal to the Debye length into the liquid 
within the pore, as we have shown above. If a pressure gradient is applied to 
make the salt solution flow through the pore, then, because of an excess of 
charge of one sign within the pore liquid, there results a net transport of charge 
and the buildup of the streaming potential defined in the last section. The effect 
of the potential is to set up an electric field parallel to the surface that will 
increase the transport of the coions and reduce that of the counterions until 
there is an equal steady-state transport of positive and negative ions, the feed 
and effluent solutions being insulated from each other so that there is no current 
flow. In this steady state, salt and water, but not charge, are transported 
through the capillary. However, the net effect of the coion exclusion and the 
axial field is such as to cause the ratio of the molar salt flux to the volume flux 
of water to be less than the molar salt concentration on the upstream side of the 
membrane. In other words, the membrane tends to reject salt. This model has 
been used to describe the salt rejection characteristics of reverse osmosis 
membranes Uacazio et al. 1972, Sonin 1976). 
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6.6 Effects of Chemical Reactions 

We have to this point neglected any effects of chemical reactions that are 
frequently associated with electrolyte solutions in the presence of an electric 
field. One ubiquitous example is the dissociation of water (Section 6.1),  while 
another is reactions brought about by the presence of dissolved impurities. 

An application of electrokinetics that serves to illustrate a number of 
chemical effects is that of electroosmotic purging of contaminated liquids from 
soils (Shapiro & Probstein 1993). A dc electric field is applied across electrode 
pairs in the ground and under the action of the field, the contaminants in the 
liquid phase in the soil are moved by electroosmosis to one set of electrodes, 
typically the cathodes. The electric field simultaneously draws in a noncon- 
taminating liquid to help wash and treat the soil to enhance the restoration 
process. The contaminated effluent is then removed by pumping from wells 
surrounding the cathodes. 

The problem is a complex one for not only is there convection of the liquid 
by electroosmosis but if the dissolved contaminants are themselves charged, then 
an additional electromigration velocity will be imposed on them. Moreover, to 
the extent that concentration gradients are set up, there will also be transport of 
dissolved species by diffusion. In addition, there are chemical reactions in the 
bulk fluid and at  the electrodes, together with adsorption or desorption at the 
soil surface. 

Typically electrolysis of water takes place at  the electrodes (Eqs. 6.1.25). 
The electrolysis reaction lowers the pH at the anode and raises it at the cathode, 
accompanied by the propagation of an acid front into the soil from the anode 
and a base front from the cathode. This process can have a significant effect on 
the soil zeta potential, which is strongly dependent upon pH, as well as on the 
solubility, ionic state and charge, and level of adsorption of the contaminants. 
Most importantly, nearly all soils become less negatively charged with decreas- 
ing pH because adsorbed hydrogen ions neutralize the negative charge. 

The phenomena and processes described can be modeled by convective 
diffusion equations with chemical reactions. In the simplest model, we may 
apply these equations in a cylindrical capillary and by means of a capillary 
model to a porous medium. Assuming dilute solutions, rapid chemical reactions, 
the double-layer thickness to the soil pore radius and the Peclet number based 
on the pore radius both small, the overall transport rate for the ith species in a 
straight cylindrical capillary is 

(6.6.1) 

This equation follows from continuity (Eq. 3.3 .2)  and the Nernst-Planck 
relation (Eq. 3.4.1). The overbars indicate that the variable has been averaged 
over the tube cross-section (Eq. 4.6.19), and Ri and R: are the molar rates of 
production due to  chemical reactions and sorption, respectively. 

Here, we have defined two velocities that appear in the brackets. The first 
is the electromigration velocity 
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(6.6.2) 

and the second is the convection velocity, that is, the bulk electroosmotic 
velocity 

(6.6.3) 

The brackets denote the volume average of the scalar product of the local 6 
potential and the electric field in the x-direction. This result can be seen from 
Eq. (6.5.24) by dividing by the capillary length and cross-sectional area and in 
the limit of a thin diffuse layer and integrating over this length. Although there 
is an induced pore pressure gradient, this term drops out in the integration 
because the pressures a t  the capillary ends are equal. Thus Uc is just the average 
interstitial fluid velocity in the x-direction and, owing to the incompressibility of 
the system, is independent of position and is the same for each species. The 
electromigration velocity ue,, on the other hand depends on the local electric 
field and differs for each species. 

The electric field from Eq. (3.4.4) is given by 

a i  ac T =  -(T(X) - - 2 Z,D, -2 
d X  d X  

(6.6.4) 

The current remains constant along the length of the cell, so the electric field 
varies with position to compensate for variations in concentration. Because the 
total applied voltage is known, Eq. (6.6.4) provides a relationship between 
d & l d x  and 2,. 

The sorption rate R," is characterized by a particular isotherm, and it 
relates the concentration in the adsorbed phase to that in the bulk solution. The 
reaction rate R ,  is eliminated from Eq. (6.6.1) by using the equilibrium constant 
for the reaction and the conservation of mass of the elements to determine the 
equilibrium concentration of the species. In the special case of hydrogen and 
hydroxyl ions, mass conservation cannot be used because the total amount of 
water present is not known (unit activity is assumed). However, the elec- 
troneutrality condition, Eq. (3.4.8) provides the extra equation required and, 
with the dissociation constant for water, fixes the concentrations of hydrogen 
and hydroxyl ions. Using the transport equations to track the movement of 
these ions is therefore not necessary and in fact would overspecify the problem. 

The solution of these equations subject to the boundary conditions must 
generally be carried out numerically although the procedures are not described 
here. Two limiting cases are one in which electroosmosis is the dominant 
removal mechanism for the dissolved contaminant and one where electro- 
migration is the principal removal mechanism. The removal of aqueous soluble 
organics would be principally by electroosmosis, and the removal of soluble 
metal ions would be mainly by electroniigration. 
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Figure 6.6.1 Comparison after removing 0.12 pore volumes of liquid between finite 
element calculations and experiment for electroosmotic purging of acetic acid from a 
cylindrical clay sample 0.5 m long, initially saturated with a 100 mol m-3 acetic acid 
solution (Co), across which 25 V is applied: (A) normalized acetate concentration along 
sample; (B)  pH profile along sample (after Shapiro & Probstein 1993). 
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The ability to model can be seen in Fig. 6.6.1 where comparisons are given 
between finite element calculations and experimental results for the electro- 
osmotic purging of a 100 mol m-3 acetic acid solution initially saturating a 
kaolin clay sample. The distributions shown are after 0.12 of a pore volume of 
liquid is removed. The  purge is a 100 mol m-3 NaCl solution and  the sample is 
compacted in an  acrylic cylinder 0.5 m in length and 0.1 m in diameter with 

Anode Cathode 
Figure 6.6.2 Photographs of motion of acid front from the anode and base front from 
the cathode for removal by electromigration of zinc from a cylindrical clay sample 0.2 m 
long, initially saturated with a 7.7molm-3 zinc solution, across which 8 V  is applied. 
The frame times from top to bottom are 6, 8, 10, and 11.3 h, respectively. [Courtesy of 
Dr. Sebastian Tondorf. From Probstein & Hicks 1993. Removal of contaminants from 
soils by electric fields. Science 260, 498-503. Copyright 1993 by the AAAS. With 
permission.] 
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porous carbon fiberboard electrodes at  each end across which a constant voltage 
of 25 V is applied. The only parameter chosen is a volume-averaged zeta 
potential that is matched to give the mean experimental flow rate. Such a 
procedure is dictated by the fact that the l potential generally is not known as a 
function of the pH, ion concentration, and soil type although it can be 
determined semi-empirically. In this instance, the deeper penetration of the acid 
front from the anode than the base front from the cathode results primarily 
from the electroosmotic flow. 

The physics and chemistry of removal of a dissolved metal is quite 
different from that of a dissolved organic in that the metals are initially present 
in solution as positively charged ions and the principal removal mechanism is 
electromigration (Probstein & Hicks 1993). Diffusion also plays a significant 
role, particularly in regions where steep gradients in the species concentration 
develop. 

As the metal ion moves under the action of the electric field, it enters the 
region of high p H  near the cathode, where it may adsorb onto the soil, 
precipitate, or form hydroxo complexes. Typically, an intermediate p H  of 
minimum solubility exists a t  which virtually all of the metal precipitates. This 
“focusing” of the metal at  an intermediate point between the electrodes, which 
has been observed experimentally, generally takes place at  the point where there 
is a sharp jump in the pH. The formation of such a p H  jump is shown in Fig. 
6.6.2 for a zinc removal test. In the experiment, a clay sample packed into an 
acrylic cylinder 200 mm in length and 32 mm in diameter is saturated initially 
with a 7.7 mol m-3 zinc solution. A voltage of 8 V is applied across the sample 
and p H  indicators are used to define the acid front from the anode and base 
front from the cathode which move into the clay at constant speeds. The sharp 
front forming a t  about 11 h remains relatively stationary during the test period 
of over a week. If ionic contaminants are to be removed, the increase in p H  in 
the cathode region must be prevented. A number of simple procedures exist, 
typically involving rinsing the cathode with a solution to neutralize or  wash 
away the hydroxyl ions. 
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Problems 

6.1 

6.2 

The current-voltage characteristic of an electrolytic cell was analyzed in 
Section 6.1, where the solution contained between the copper electrodes 
was cupric sulfate. Suppose that the cupric sulfate solution is replaced b y  
another electrolyte which is indifferent to the electrodes; that is, no 
chemical reactions take place at  the electrode surfaces. A constant po- 
tential difference is applied across the electrodes. Determine the potential 
and concentration distributions in the solution between the electrodes. 
A practical problem in electrodialysis is surface fouling of the membranes 
caused by deposits of macromolectiles or colloidal particles. If the fouling 
material is uncharged, then its effect may be modeled by considering the 
addition of a thin film of thickness A, that acts as an added resistive layer 
through which the ions must pass before reaching the membrane. It is 
desired to estimate the effect of such a fouling film using the simple Nernst 
diffusion layer model in which the salt concentration is taken to drop 
linearly from the bulk value c,, over a diffusion layer thickness 6, to a 
value c , ~  at the edge of the film. It is then assumed to drop linearly from c ,  
to c2: at the edge of the membrane proper. For specificity consider the 
dialysate side of a cation exchange membrane and take the dilute salt 
solution to consist of equal numbers of anions and cations having equal 
diffusion coefficients. 
a. Will the value of the limiting current be lower or higher with the 

fouling film present? Why? 
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b. If D, is the diffusion coefficient in the film, obtain an expression for 
the limiting current in terms of D,, A,, and the other parameters in Eq. 
(6.2.13). 

c. What is the effect on the limiting current of a film on the concentrate 
side of the membrane? 

Consider an unfavorable ion exchange process carried out in columnar 
operation. Initially, the equivalent ionic fraction of the exchangeable ion B 
in the resin is XB = 0 while in the solution x B  = 1.  If ti, is the velocity of the 
leading edge of the exchange front and tib is the velocity of the trailing 
edge, estimate the front width A divided by the variable z = (ti, + t i , ) t /2,  
where t is time measured from the start of the operation. Discuss the 
behavior of the front thickness where the capacity of the ion exchanger is 
large compared with the total equivalent concentration of the solution; 
that is, c + C. 
It is desired to determine the response of a very thin impermeable 
membrane to a cyclic load of frequency w = 100 s-', where the magnitude 
of the pressure difference across the membrane is required to be very 
small, about 10 Pa. To develop the cyclic load, a cylindrical tube with no 
surface charge and containing a dilute aqueous solution of a fully disso- 
ciated singly charged symmetrical binary salt of concentration co = 

1 mol m-3 a t  300 K is closed at  both ends by electrodes. The distance 
between the electrodes is L = 0.2 m, and located symmetrically between 
the ends is a porous plug of axial thickness t = 0.1 m, which extends 
across the tube, whose diameter is about 0.05 m. The porous plug is made 
up of finely drilled thin capillaries parallel to the tube axis and of uniform 
radii a = lo-'  m. When in contact with the electrolyte, the walls of these 
fine capillaries acquire a constant surface (zeta) potential of V An 
alternating voltage drop of 2 V  is applied across the electrodes at the 
desired frequency w. In this manner a reversing pressure difference is 
created across the plug due to electroosmosis. By means of closed fluid 
connections from both sides of the plug to both sides of the membrane, it 
is then possible to transmit the resulting cyclic load reversal across the 
membrane. 
a. Calculate the Debye length A, and the Debye length ratio A,la. 
b. What is the pressure gradient developed across the porous plug a t  any 

instant of time? 
c. Show that the inertial forces developed are small compared with the 

pressure forces. 
d. Show that the Peclet number, based on the double layer thickness 

(-A,), and the magnitude of the velocity in the double layer are small. 
Take the diffusion coefficient D to be m2 s-'. What would 
happen if the Peclet number were large? 

Rederive the small Debye length result for the electroosmotic velocity in a 
long circular capillary for a symmetrical dilute binary electrolyte (Eq. 
6.5.23)  with a constant surface charge density in place of constant surface 
(zeta) potential. Show that the appropriate boundary condition at  the tube 

6.3 

6.4 

6.5 
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wall that replaces the one of constant potential is d$ ldv  = q S / E ,  where q, is 
the constant surface charge density. 
Consider a long circular capillary containing a symmetrical dilute binary 
electrolyte where the Debye length is large compared with the capillary 
radius. Calculate the electroosmotic volume flow rate Q for a constant 
surface charge density 4,. 
I t  was suggested that in the simplest capillary model of a porous medium, 
the basic electrokinetic equations (6.6.1)-( 6.6.4) for a straight cylindrical 
capillary could be applied. However, in an actual porous medium, the 
capillaries are sinuous so that the flow length is actually longer than the 
straight-through distance. This is frequently accounted for by introducing 
a tortuosity factor, r, which is a constant determined empirically. One way 
to model the effect of the longer flow path is to assume that the flow takes 
place in a tilted path (x-direction) between two surfaces of constant 
potential, while the straight-through or  shortest path between the surfaces 
is in the z-direction. This is like crossing a street at  an angle. In this case 
dzldx = 1 lr. Using this definition, what forms do  Eqs. (6.6.1)-(6.6.4) 
take in terms of z and 7. 
If Eq. (6.6.1) is applied to a porous medium by a simple capillary model, 
then the superficial velocity is given by U = EU,, where F is the porosity 
and M, is the convection velocity in Eq. (6.6.1). Locally, the interstitial 
convection velocity is made up of hydraulic and electroosmotic contribu- 
tions and is given by 

6.6 

6.7 

6.8 

where p is the pressure and k is the hydraulic permeability of the porous 
medium. Show that Eq. (6.6.3) for the convection velocity is true between 
two points of equal pressure. 


